Abstract

The tunability of graphene-based hyperbolic metamaterial structure operating in SCLU telecom bands is investigated. For the first time it has been shown that for the proper design of a graphene/dielectric multilayer stack, the HMM Type I, Epsilon-Near-Zero and Type II regimes are possible by changing the biasing potential. Numerical results reveal the effect of structure parameters such as the thickness of the dielectric layer as well as a number of graphene sheets in a unit cell (i.e., dielectric/graphene bilayer) on the tunability range and shape of the dispersion characteristics (i.e., Type I/ENZ/Type II) in SCLU telecom bands. This kind of materials could offer a technological platform for novel devices having various applications in optical communications technology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands

Anna Tyszka-Zawadzka, Bartosz Janaszek, and Paweł Szczepański
Opt. Express 25(7) 7263-7272 (2017)

Engineered surface Bloch waves in graphene-based hyperbolic metamaterials

Yuanjiang Xiang, Jun Guo, Xiaoyu Dai, Shuangchun Wen, and Dingyuan Tang
Opt. Express 22(3) 3054-3062 (2014)

Tunable bulk polaritons of graphene-based hyperbolic metamaterials

Liwei Zhang, Zhengren Zhang, Chaoyang Kang, Bei Cheng, Liang Chen, Xuefeng Yang, Jian Wang, Weibing Li, and Baoji Wang
Opt. Express 22(11) 14022-14030 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  2. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  3. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
    [Crossref] [PubMed]
  4. A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015), doi:.
    [Crossref] [PubMed]
  5. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
    [Crossref] [PubMed]
  6. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
    [Crossref]
  7. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
    [Crossref] [PubMed]
  8. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  9. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
    [Crossref]
  10. G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
    [Crossref]
  11. M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref] [PubMed]
  12. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
    [Crossref]
  13. L. Zhang, Z. Zhang, C. Kang, B. Cheng, L. Chen, X. Yang, J. Wang, W. Li, and B. Wang, “Tunable bulk polaritons of graphene-based hyperbolic metamaterials,” Opt. Express 22(11), 14022–14030 (2014).
    [Crossref] [PubMed]
  14. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  15. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
    [Crossref]
  16. A. A. Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
    [Crossref]
  17. A. A. Sayem, M. R. C. Mahdy, D. N. Hasan, and M. A. Matin, “Tunable slow light with graphene based hyperbolic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 230–233.
    [Crossref]
  18. A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
    [Crossref]
  19. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  20. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
    [Crossref]
  21. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
    [Crossref]
  22. R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
    [Crossref]
  23. S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).
  24. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
    [Crossref]
  25. R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
    [Crossref]
  26. R. Degraeve, B. Kaczer, and G. Groeseneken, “Ultra-thin oxide reliability: searching for the thickness scaling limit,” Microelectron. Reliab. 40(4-5), 697–701 (2000).
    [Crossref]
  27. B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
    [Crossref]

2015 (6)

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015), doi:.
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

2014 (4)

2013 (6)

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

2012 (3)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

2011 (1)

B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
[Crossref]

2008 (1)

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

2007 (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

2006 (1)

2000 (1)

R. Degraeve, B. Kaczer, and G. Groeseneken, “Ultra-thin oxide reliability: searching for the thickness scaling limit,” Microelectron. Reliab. 40(4-5), 697–701 (2000).
[Crossref]

Alekseyev, L. V.

Andryieuski, A.

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Atwater, H. A.

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Babicheva, V. E.

Beck, R. B.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Belov, P. A.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Bhuyan, S. A.

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

Bian, B.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Bipasha, F. A

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

Boltasseva, A.

Capolino, F.

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Chang, Y.-C.

A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
[Crossref]

Chen, L.

Cheng, B.

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Cwil, M.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Dai, X.

DaSilva, A. M.

A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
[Crossref]

Degraeve, R.

R. Degraeve, B. Kaczer, and G. Groeseneken, “Ultra-thin oxide reliability: searching for the thickness scaling limit,” Microelectron. Reliab. 40(4-5), 697–701 (2000).
[Crossref]

Drachev, V. P.

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Fang, L.

B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
[Crossref]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Gong, J. R.

B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
[Crossref]

Groeseneken, G.

R. Degraeve, B. Kaczer, and G. Groeseneken, “Ultra-thin oxide reliability: searching for the thickness scaling limit,” Microelectron. Reliab. 40(4-5), 697–701 (2000).
[Crossref]

Guclu, C.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

Guo, B.

B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
[Crossref]

Guo, J.

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Hasan, D. N.

A. A. Sayem, M. R. C. Mahdy, D. N. Hasan, and M. A. Matin, “Tunable slow light with graphene based hyperbolic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 230–233.
[Crossref]

He, S.

He, Y.

Hoffmann, P.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Hossain, S. S

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

Iorsh, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Ishii, S.

Islam, M

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

Jacob, Z.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Jakubowski, A.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Jiao, Z.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Kaczer, B.

R. Degraeve, B. Kaczer, and G. Groeseneken, “Ultra-thin oxide reliability: searching for the thickness scaling limit,” Microelectron. Reliab. 40(4-5), 697–701 (2000).
[Crossref]

Kang, C.

Kildishev, A. V.

Kivshar, Y. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Kong, X.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Kwietniewski, N.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Lavrinenko, A. V.

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, W.

Liu, S.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

MacDonald, A. H.

A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
[Crossref]

Mahdy, M. R. C.

A. A. Sayem, M. R. C. Mahdy, D. N. Hasan, and M. A. Matin, “Tunable slow light with graphene based hyperbolic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 230–233.
[Crossref]

A. A. Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
[Crossref]

Matin, M. A.

A. A. Sayem, M. R. C. Mahdy, D. N. Hasan, and M. A. Matin, “Tunable slow light with graphene based hyperbolic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 230–233.
[Crossref]

Mroczynski, R.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Mukhin, I. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Narimanov, E.

Neira, A. D.

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015), doi:.
[Crossref] [PubMed]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Ning, R.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Norris, T.

A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
[Crossref]

Othman, M. A.

Othman, M. A. K.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Papadakis, G. T.

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Podolskiy, V. A.

Rahman, M. S.

A. A. Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
[Crossref]

Sayem, A. A.

A. A. Sayem, M. R. C. Mahdy, D. N. Hasan, and M. A. Matin, “Tunable slow light with graphene based hyperbolic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 230–233.
[Crossref]

A. A. Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
[Crossref]

Shadrivov, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Shahriar, A.

A. A. Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
[Crossref]

Shalaginov, M. Y.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tang, D.

Uddin, N

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Wang, B.

Wang, J.

Wen, S.

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wurtz, G. A.

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015), doi:.
[Crossref] [PubMed]

Xiang, Y.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yang, X.

Zayats, A. V.

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015), doi:.
[Crossref] [PubMed]

Zhang, B.

B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
[Crossref]

Zhang, H.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Zhang, L.

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, Z.

Adv. Optoelectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

AIP Adv. (1)

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Insci. J (1)

B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insci. J 1, 80–89 (2011).
[Crossref]

Int. J. Innov. Sci. Res. (1)

S. A. Bhuyan, N Uddin, F. A Bipasha, M Islam, and S. S Hossain, “A review of functionalized graphene properties and its application,” Int. J. Innov. Sci. Res. 17, 303–315 (2015).

J. Nanophotonics (1)

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Microelectron. Reliab. (1)

R. Degraeve, B. Kaczer, and G. Groeseneken, “Ultra-thin oxide reliability: searching for the thickness scaling limit,” Microelectron. Reliab. 40(4-5), 697–701 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (4)

A. M. DaSilva, Y.-C. Chang, T. Norris, and A. H. MacDonald, “Enhancement of photonic density of states in finite graphene multilayers,” Phys. Rev. B 88(19), 195411 (2013).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Physica B (1)

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (1)

A. D. Neira, G. A. Wurtz, and A. V. Zayats, “Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides,” Sci. Rep. 5, 17678 (2015), doi:.
[Crossref] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Vacuum (1)

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and A. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Other (2)

A. A. Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
[Crossref]

A. A. Sayem, M. R. C. Mahdy, D. N. Hasan, and M. A. Matin, “Tunable slow light with graphene based hyperbolic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 230–233.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of graphene/dielectric multilayer structure.
Fig. 2
Fig. 2 Permittivity tensor components versus wavelength for various number of graphene sheets Ng: (a) μc = 0 eV and td = 6 nm; (b) μc = 0 eV and td = 8 nm; (c) μc = 0 eV and td = 10 nm; (d) μc = 20 meV and td = 6 nm; (e) μc = 20 meV td = 8 nm; (f) μc = 20 meV td = 10 nm.
Fig. 3
Fig. 3 Effect of gate voltage Vg on permittivity tensor components ε and ε|| for different design values: (a) td = 6 nm, Ng = 1, (b) td = 6 nm, Ng = 6, (c) td = 10 nm, Ng = 1, (d) td = 10 nm, Ng = 6.
Fig. 4
Fig. 4 Permittivity tensor components ε and ε|| versus gate voltage Vg for different dielectric layer thicknesses (a), (b) td = 6 nm and (c), (d) td = 10 nm and wavelength λ = 1.55 μm.
Fig. 5
Fig. 5 Permittivity tensor components for selected wavelength λ = 1.55 μm as a function of gate voltage Vg for different structural parameters (td = 6 and 10 nm) and biasing ranges (a) 0 V ÷ 2 V and (b) 0 mV ÷ 35 mV.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε=( ε 0 0 0 ε 0 0 0 ε ),
ε = t g ε g + t d ε d t g + t d , ε = ε g ε d ( t g + t d ) t g ε d + t d ε g ,
ε g =1j σ(ω, μ c ) ω ε o t g ,
σ(ω, μ c )= j4π q 2 k B T h 2 (ωj2τ) [ μ c k B T +2ln( e μ / k B T +1 ) ]+
j4π q 2 ( ωj2τ ) h 2 0 f D (ξ) f D (ξ) ( ωj2τ ) 2 16( πξ h ) dξ,
| μ c |= υ F π| a 0 ( V g V dirac ) | ,

Metrics