Abstract

This study presents an application of the Cytosense flow cytometer (CytoBuoy b.v., NL) for the analysis of the optical properties of phytoplankton cells. For the first time, the forward, sideward and backward cross sections (σFSC, σSSC and σbb) were derived for two species morphologically different (Chlamydomonas concordia and Thalassiosira pseudonana). The objective of this work is to check the validity of the estimates before any applications in the frame of marine optics studies. Thus, estimates of σFSC and σSSC are tested with radiative transfer computations as no in situ measurements are available. A synthetic database is built considering homogeneous, multi-layered spheres, aggregates and cylinders. Scanning electron micrographs were performed to investigate the cell morphology to simulate particles as close as possible to the real cells. This set of numerical results represents a valuable database for many kinds of applications dealing with marine optics. Comparisons showed that the Cytosense estimates for the cultures are consistent with values predicted by the theory. In average, more than 92% of the Cytosense estimates were encompassed by predicted values. The backscattering cross section and the backscattering efficiency were compared with in situ measurements found in the literature wherever possible. Results showed that σbb and Qbb estimations fall within the range of the referenced values.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology

Lucile Duforêt-Gaurier, William Moutier, Natacha Guiselin, Mélilotus Thyssen, George Dubelaar, Xavier Mériaux, Lucie Courcot, David Dessailly, and Hubert Loisel
Opt. Express 23(24) 31510-31533 (2015)

Variations in the optical scattering properties of phytoplankton cultures

Wen Zhou, Guifen Wang, Zhaohua Sun, Wenxi Cao, Zhantang Xu, Shuibo Hu, and Jun Zhao
Opt. Express 20(10) 11189-11206 (2012)

Spectral backscattering properties of marine phytoplankton cultures

Amanda L. Whitmire, W. Scott Pegau, Lee Karp-Boss, Emmanuel Boss, and Timothy J. Cowles
Opt. Express 18(14) 15073-15093 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Preisendorfer, “Secchi disk science: Visual optics of natural waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
    [Crossref]
  2. A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” Proc. SPIE. 1750, 27–33 (1992).
    [Crossref]
  3. J. C. Kitchen and J.R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
    [Crossref]
  4. R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophysical journal. 15, 191–203 (1975).
    [Crossref] [PubMed]
  5. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18(5), 585–588 (1979).
    [Crossref] [PubMed]
  6. A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89, 311–321 (2004).
    [Crossref]
  7. J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 309–313 (1995).
  8. S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosci. Discuss. 6, 1497–1563 (2009).
    [Crossref]
  9. G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
    [Crossref]
  10. M. W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosci. Discuss. 10(6), 10531–10579 (2013).
    [Crossref]
  11. M. S. Quinby-Hunt and A. J. Hunt, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
    [Crossref]
  12. A. Quirantes and S. Bernard, “Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100, 315–324 (2006).
    [Crossref]
  13. O. Svensen, O. Frette, and S. R. Erga, “Scattering properties of microalgae: the effect of cell size and cell wall,” Appl. Opt. 46(23), 5762–5769 (2007).
    [Crossref] [PubMed]
  14. D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: A database of single-particle optical properties,” Limnol. Oceanogr. 42(3), 538–549 (1997).
    [Crossref]
  15. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
    [Crossref]
  16. Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11/12), 1835–1855 (1992).
    [Crossref]
  17. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [Crossref]
  18. A. Morel and A. Bricaud, “Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).
  19. A. Bricaud, A. Morel, and L. Prieur, “Optical Efficiency Factors of Some Phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
    [Crossref]
  20. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
    [Crossref] [PubMed]
  21. A. Morel and Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
    [Crossref]
  22. H. Volten, J. F. D. Haan, and J. W. Hovenier, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
    [Crossref]
  23. G. B. J. Dubelaar, J. W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry. 8(4), 405–412 (1987).
    [Crossref] [PubMed]
  24. K. J. Voss, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43(5), 870–876 (1998).
    [Crossref]
  25. K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
    [Crossref]
  26. K. Witkowski, L. Woliriski, and Z. Turzyliski, “The investigation of kinetic growth of Chlorella vulgaris cells by the method of integral and dynamic light scattering,” Limnol. Oceanogr. 38(7), 1365–1372 (1993).
    [Crossref]
  27. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
    [Crossref]
  28. A. L. Whitmire, W. S. Pegau, and L. Karp-Boss, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express. 18(14), 1680–1690 (2010).
    [Crossref]
  29. R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, “Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates,” Appl. Opt. 42(3), 526–541 (2003).
    [Crossref] [PubMed]
  30. R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
    [Crossref]
  31. L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
    [Crossref] [PubMed]
  32. M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39(6), 1026–1031 (2000).
    [Crossref]
  33. Y. L. Xu and B. A. S. Gustafson, “A generalized multiparticle Mie-solution: Further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
    [Crossref]
  34. G. B. J. Dubelaar and R. R. Jonker, “Flow cytometry as a tool for the study of phytoplankton,” Scientia Marina. 64(2), 135–156, (2000).
    [Crossref]
  35. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light of Small Particles (Cambridge University, 2002).
  36. W. J. Clavano, E. S. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles-from theory to observation,” Oceanography and Marine Biology. 45, 1–38 (2007).
  37. G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
    [Crossref]
  38. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
    [Crossref]
  39. Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995).
    [Crossref] [PubMed]
  40. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).
  41. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003).
    [Crossref] [PubMed]
  42. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Computer Physics Communications. 180(11), 2348–2354 (2009).
    [Crossref]
  43. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
    [Crossref]
  44. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  45. K. L. Carder, R. D. Tomlinson, and C. F. Beadsley, “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17(6), 833–839 (1972).
    [Crossref]
  46. A. Bricaud, A. L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
    [Crossref]
  47. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A(11), 1375–1393 (1981).
  48. F. C. Stephens, “Variability of spectral absorption efficiency within living cells of Pyrocystis lunula (Dinophyta),” Marine Biology. 122, 325–331 (1995).
  49. R. J. Geider and B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Marine Biology. 96(2), 299–308 (1987).
    [Crossref]
  50. E. Charney and F. S. Brackett, “The spectral dependence of scattering from a spherical alga and its implications for the state of organization of the light-accepting pigments,” Archives of biochemistry and biophysics. 92, 1–12 (1961).
    [Crossref] [PubMed]
  51. J. L. Mueller, The influence of phytoplankton on ocean color spectra (Ph.D Thesis, Oregon State University., Corvallis, 1974).
  52. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
    [Crossref]
  53. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” A. Kokhanovsky, ed. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books, 2013), pp. 189–224.
  54. A. Quirantes and A. V. Delgado, “Scattering cross sections of randomly oriented coated spheroids,” J. Quant. Spectrosc. Radiat. Transf. 70, 261–272 (2001).
    [Crossref]
  55. A. Engel, “The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom,” J. Plankton Res. 22(3), 485–497 (2000).
    [Crossref]
  56. A. Engel, “Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes,” Deep-Sea Research Part I: Oceanographic Research Papers. 51(1), 83–92 (2004).
    [Crossref]
  57. S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine participates: a flow cytometric approach,” Appl. Opt. 27(7), 1270–1277 (1988).
    [Crossref] [PubMed]
  58. D. W. Mackowski and M. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
    [Crossref]
  59. H. R. Gordon, “Backscattering of light from disklike particles: is fine-scale structure or gross morphology more important,” Appl. Opt. 45(27), 7166–7173 (2006).
    [Crossref] [PubMed]
  60. M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
    [Crossref]
  61. M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
    [Crossref]

2015 (2)

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

2014 (1)

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

2013 (1)

M. W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosci. Discuss. 10(6), 10531–10579 (2013).
[Crossref]

2012 (1)

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
[Crossref]

2011 (1)

D. W. Mackowski and M. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

2010 (1)

A. L. Whitmire, W. S. Pegau, and L. Karp-Boss, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express. 18(14), 1680–1690 (2010).
[Crossref]

2009 (2)

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosci. Discuss. 6, 1497–1563 (2009).
[Crossref]

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Computer Physics Communications. 180(11), 2348–2354 (2009).
[Crossref]

2007 (2)

O. Svensen, O. Frette, and S. R. Erga, “Scattering properties of microalgae: the effect of cell size and cell wall,” Appl. Opt. 46(23), 5762–5769 (2007).
[Crossref] [PubMed]

W. J. Clavano, E. S. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles-from theory to observation,” Oceanography and Marine Biology. 45, 1–38 (2007).

2006 (3)

G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
[Crossref]

A. Quirantes and S. Bernard, “Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100, 315–324 (2006).
[Crossref]

H. R. Gordon, “Backscattering of light from disklike particles: is fine-scale structure or gross morphology more important,” Appl. Opt. 45(27), 7166–7173 (2006).
[Crossref] [PubMed]

2004 (3)

A. Engel, “Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes,” Deep-Sea Research Part I: Oceanographic Research Papers. 51(1), 83–92 (2004).
[Crossref]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89, 311–321 (2004).
[Crossref]

2003 (3)

2001 (4)

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[Crossref]

A. Quirantes and A. V. Delgado, “Scattering cross sections of randomly oriented coated spheroids,” J. Quant. Spectrosc. Radiat. Transf. 70, 261–272 (2001).
[Crossref]

Y. L. Xu and B. A. S. Gustafson, “A generalized multiparticle Mie-solution: Further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[Crossref]

2000 (3)

M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39(6), 1026–1031 (2000).
[Crossref]

G. B. J. Dubelaar and R. R. Jonker, “Flow cytometry as a tool for the study of phytoplankton,” Scientia Marina. 64(2), 135–156, (2000).
[Crossref]

A. Engel, “The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom,” J. Plankton Res. 22(3), 485–497 (2000).
[Crossref]

1998 (4)

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

K. J. Voss, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43(5), 870–876 (1998).
[Crossref]

K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[Crossref]

H. Volten, J. F. D. Haan, and J. W. Hovenier, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

1997 (1)

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: A database of single-particle optical properties,” Limnol. Oceanogr. 42(3), 538–549 (1997).
[Crossref]

1996 (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

1995 (3)

F. C. Stephens, “Variability of spectral absorption efficiency within living cells of Pyrocystis lunula (Dinophyta),” Marine Biology. 122, 325–331 (1995).

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 309–313 (1995).

Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995).
[Crossref] [PubMed]

1993 (1)

K. Witkowski, L. Woliriski, and Z. Turzyliski, “The investigation of kinetic growth of Chlorella vulgaris cells by the method of integral and dynamic light scattering,” Limnol. Oceanogr. 38(7), 1365–1372 (1993).
[Crossref]

1992 (3)

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” Proc. SPIE. 1750, 27–33 (1992).
[Crossref]

J. C. Kitchen and J.R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11/12), 1835–1855 (1992).
[Crossref]

1991 (2)

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[Crossref]

A. Morel and Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[Crossref]

1989 (1)

M. S. Quinby-Hunt and A. J. Hunt, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[Crossref]

1988 (2)

A. Bricaud, A. L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[Crossref]

S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine participates: a flow cytometric approach,” Appl. Opt. 27(7), 1270–1277 (1988).
[Crossref] [PubMed]

1987 (2)

R. J. Geider and B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Marine Biology. 96(2), 299–308 (1987).
[Crossref]

G. B. J. Dubelaar, J. W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry. 8(4), 405–412 (1987).
[Crossref] [PubMed]

1986 (3)

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[Crossref] [PubMed]

A. Morel and A. Bricaud, “Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

R. W. Preisendorfer, “Secchi disk science: Visual optics of natural waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
[Crossref]

1983 (1)

A. Bricaud, A. Morel, and L. Prieur, “Optical Efficiency Factors of Some Phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[Crossref]

1981 (1)

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A(11), 1375–1393 (1981).

1979 (1)

1975 (1)

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophysical journal. 15, 191–203 (1975).
[Crossref] [PubMed]

1972 (1)

K. L. Carder, R. D. Tomlinson, and C. F. Beadsley, “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17(6), 833–839 (1972).
[Crossref]

1961 (1)

E. Charney and F. S. Brackett, “The spectral dependence of scattering from a spherical alga and its implications for the state of organization of the light-accepting pigments,” Archives of biochemistry and biophysics. 92, 1–12 (1961).
[Crossref] [PubMed]

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

Ackleson, S. G.

Ahn, Y.-H.

Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11/12), 1835–1855 (1992).
[Crossref]

Ahn, Y-H.

A. Morel and Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[Crossref]

Alvain, S.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

Artigas, L.-F.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

Balch, W. M.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Beadsley, C. F.

K. L. Carder, R. D. Tomlinson, and C. F. Beadsley, “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17(6), 833–839 (1972).
[Crossref]

Bédhomme, A. L.

A. Bricaud, A. L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[Crossref]

Behrenfeld, M. J.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
[Crossref]

Bernard, S.

M. W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosci. Discuss. 10(6), 10531–10579 (2013).
[Crossref]

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosci. Discuss. 6, 1497–1563 (2009).
[Crossref]

A. Quirantes and S. Bernard, “Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100, 315–324 (2006).
[Crossref]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89, 311–321 (2004).
[Crossref]

Boss, E.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
[Crossref]

Boss, E. S.

W. J. Clavano, E. S. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles-from theory to observation,” Oceanography and Marine Biology. 45, 1–38 (2007).

Brackett, F. S.

E. Charney and F. S. Brackett, “The spectral dependence of scattering from a spherical alga and its implications for the state of organization of the light-accepting pigments,” Archives of biochemistry and biophysics. 92, 1–12 (1961).
[Crossref] [PubMed]

Bricaud, A.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[Crossref]

Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11/12), 1835–1855 (1992).
[Crossref]

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” Proc. SPIE. 1750, 27–33 (1992).
[Crossref]

A. Bricaud, A. L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[Crossref]

A. Morel and A. Bricaud, “Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[Crossref] [PubMed]

A. Bricaud, A. Morel, and L. Prieur, “Optical Efficiency Factors of Some Phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[Crossref]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A(11), 1375–1393 (1981).

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Brunsting, A.

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophysical journal. 15, 191–203 (1975).
[Crossref] [PubMed]

Carder, K. L.

K. L. Carder, R. D. Tomlinson, and C. F. Beadsley, “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17(6), 833–839 (1972).
[Crossref]

Charney, E.

E. Charney and F. S. Brackett, “The spectral dependence of scattering from a spherical alga and its implications for the state of organization of the light-accepting pigments,” Archives of biochemistry and biophysics. 92, 1–12 (1961).
[Crossref] [PubMed]

Chen, G.

G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
[Crossref]

Clavano, W. J.

W. J. Clavano, E. S. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles-from theory to observation,” Oceanography and Marine Biology. 45, 1–38 (2007).

Courcot, L.

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Creach, V.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

Dall’Olmo, G.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
[Crossref]

Delgado, A. V.

A. Quirantes and A. V. Delgado, “Scattering cross sections of randomly oriented coated spheroids,” J. Quant. Spectrosc. Radiat. Transf. 70, 261–272 (2001).
[Crossref]

Dessailly, D.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Donze, M.

G. B. J. Dubelaar, J. W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry. 8(4), 405–412 (1987).
[Crossref] [PubMed]

Du, T.

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[Crossref]

Dubelaar, G. B. J.

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

G. B. J. Dubelaar and R. R. Jonker, “Flow cytometry as a tool for the study of phytoplankton,” Scientia Marina. 64(2), 135–156, (2000).
[Crossref]

G. B. J. Dubelaar, J. W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry. 8(4), 405–412 (1987).
[Crossref] [PubMed]

Duforêt-Gaurier, L.

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Dugenne, M.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

DuRand, M. D.

Edmonds, A. R.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

Engel, A.

A. Engel, “Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes,” Deep-Sea Research Part I: Oceanographic Research Papers. 51(1), 83–92 (2004).
[Crossref]

A. Engel, “The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom,” J. Plankton Res. 22(3), 485–497 (2000).
[Crossref]

Erga, S. R.

Frette, O.

Garcia, F.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Garcia, N.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Geider, R. J.

R. J. Geider and B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Marine Biology. 96(2), 299–308 (1987).
[Crossref]

Gordon, H. R.

H. R. Gordon, “Backscattering of light from disklike particles: is fine-scale structure or gross morphology more important,” Appl. Opt. 45(27), 7166–7173 (2006).
[Crossref] [PubMed]

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[Crossref]

Green, R. E.

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[Crossref]

R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, “Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates,” Appl. Opt. 42(3), 526–541 (2003).
[Crossref] [PubMed]

Grégori, G.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Guillard, R. R. L.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Guiselin, N.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Gustafson, B. A. S.

Y. L. Xu and B. A. S. Gustafson, “A generalized multiparticle Mie-solution: Further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

Haan, J. F. D.

H. Volten, J. F. D. Haan, and J. W. Hovenier, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Hovenier, J. W.

H. Volten, J. F. D. Haan, and J. W. Hovenier, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Hunt, A. J.

M. S. Quinby-Hunt and A. J. Hunt, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[Crossref]

Jonker, R. R.

G. B. J. Dubelaar and R. R. Jonker, “Flow cytometry as a tool for the study of phytoplankton,” Scientia Marina. 64(2), 135–156, (2000).
[Crossref]

Karp-Boss, L.

A. L. Whitmire, W. S. Pegau, and L. Karp-Boss, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express. 18(14), 1680–1690 (2010).
[Crossref]

W. J. Clavano, E. S. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles-from theory to observation,” Oceanography and Marine Biology. 45, 1–38 (2007).

Kattawar, G. W.

G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
[Crossref]

Kiefer, D. A.

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[Crossref]

Kitchen, J. C.

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 309–313 (1995).

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” Proc. SPIE. 1750, 27–33 (1992).
[Crossref]

J. C. Kitchen and J.R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

Król, T.

K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[Crossref]

Kuten, E.

K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light of Small Particles (Cambridge University, 2002).

Lefèbvre, A.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

Loisel, H.

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Mackowski, D. W.

D. W. Mackowski and M. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Mante, C.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Matthews, M. W.

M. W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosci. Discuss. 10(6), 10531–10579 (2013).
[Crossref]

Mériaux, X.

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Meyer, R. A.

Mishchenko, M.

D. W. Mackowski and M. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Mishchenko, M. I.

G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
[Crossref]

M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39(6), 1026–1031 (2000).
[Crossref]

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light of Small Particles (Cambridge University, 2002).

Mobley, C. D.

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: A database of single-particle optical properties,” Limnol. Oceanogr. 42(3), 538–549 (1997).
[Crossref]

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Moore, C. C.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” A. Kokhanovsky, ed. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books, 2013), pp. 189–224.

Morel, A.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[Crossref]

Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11/12), 1835–1855 (1992).
[Crossref]

A. Morel and Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[Crossref]

A. Bricaud, A. L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[Crossref]

A. Morel and A. Bricaud, “Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[Crossref] [PubMed]

A. Bricaud, A. Morel, and L. Prieur, “Optical Efficiency Factors of Some Phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[Crossref]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A(11), 1375–1393 (1981).

Moutier, W.

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

Mueller, J. L.

J. L. Mueller, The influence of phytoplankton on ocean color spectra (Ph.D Thesis, Oregon State University., Corvallis, 1974).

Nerini, D.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Olson, R. J.

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[Crossref]

R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, “Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates,” Appl. Opt. 42(3), 526–541 (2003).
[Crossref] [PubMed]

Osborne, B. A.

R. J. Geider and B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Marine Biology. 96(2), 299–308 (1987).
[Crossref]

Pal, U.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Computer Physics Communications. 180(11), 2348–2354 (2009).
[Crossref]

Pegau, W. S.

A. L. Whitmire, W. S. Pegau, and L. Karp-Boss, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express. 18(14), 1680–1690 (2010).
[Crossref]

Peña, O.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Computer Physics Communications. 180(11), 2348–2354 (2009).
[Crossref]

Poggiale, J.-C.

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Preisendorfer, R. W.

R. W. Preisendorfer, “Secchi disk science: Visual optics of natural waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
[Crossref]

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Optical Efficiency Factors of Some Phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[Crossref]

Probyn, T. A.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosci. Discuss. 6, 1497–1563 (2009).
[Crossref]

Quinby-Hunt, M. S.

M. S. Quinby-Hunt and A. J. Hunt, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[Crossref]

Quirantes, A.

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosci. Discuss. 6, 1497–1563 (2009).
[Crossref]

A. Quirantes and S. Bernard, “Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100, 315–324 (2006).
[Crossref]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89, 311–321 (2004).
[Crossref]

A. Quirantes and A. V. Delgado, “Scattering cross sections of randomly oriented coated spheroids,” J. Quant. Spectrosc. Radiat. Transf. 70, 261–272 (2001).
[Crossref]

Rijkeboer, M.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

Sosik, H. M.

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[Crossref]

R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, “Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates,” Appl. Opt. 42(3), 526–541 (2003).
[Crossref] [PubMed]

Spinrad, R. W.

Stephens, F. C.

F. C. Stephens, “Variability of spectral absorption efficiency within living cells of Pyrocystis lunula (Dinophyta),” Marine Biology. 122, 325–331 (1995).

Stramski, D.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[Crossref]

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: A database of single-particle optical properties,” Limnol. Oceanogr. 42(3), 538–549 (1997).
[Crossref]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[Crossref]

Sullivan, J. M.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” A. Kokhanovsky, ed. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books, 2013), pp. 189–224.

Svensen, O.

Thyssen, M.

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

Tomlinson, R. D.

K. L. Carder, R. D. Tomlinson, and C. F. Beadsley, “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17(6), 833–839 (1972).
[Crossref]

Travis, L. D.

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light of Small Particles (Cambridge University, 2002).

Turzyliski, Z.

K. Witkowski, L. Woliriski, and Z. Turzyliski, “The investigation of kinetic growth of Chlorella vulgaris cells by the method of integral and dynamic light scattering,” Limnol. Oceanogr. 38(7), 1365–1372 (1993).
[Crossref]

Twardowski, M. S.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” A. Kokhanovsky, ed. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books, 2013), pp. 189–224.

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Visser, J. W.

G. B. J. Dubelaar, J. W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry. 8(4), 405–412 (1987).
[Crossref] [PubMed]

Volten, H.

H. Volten, J. F. D. Haan, and J. W. Hovenier, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

Voss, K. J.

K. J. Voss, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43(5), 870–876 (1998).
[Crossref]

Westberry, T. K.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
[Crossref]

Whitmire, A. L.

A. L. Whitmire, W. S. Pegau, and L. Karp-Boss, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express. 18(14), 1680–1690 (2010).
[Crossref]

Witkowski, K.

K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[Crossref]

K. Witkowski, L. Woliriski, and Z. Turzyliski, “The investigation of kinetic growth of Chlorella vulgaris cells by the method of integral and dynamic light scattering,” Limnol. Oceanogr. 38(7), 1365–1372 (1993).
[Crossref]

Woliriski, L.

K. Witkowski, L. Woliriski, and Z. Turzyliski, “The investigation of kinetic growth of Chlorella vulgaris cells by the method of integral and dynamic light scattering,” Limnol. Oceanogr. 38(7), 1365–1372 (1993).
[Crossref]

Xu, Y. L.

Y. L. Xu and B. A. S. Gustafson, “A generalized multiparticle Mie-solution: Further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

Xu, Y.-l.

Yang, P.

G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
[Crossref]

Yang, W.

Zaneveld, J. R. V.

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 309–313 (1995).

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” Proc. SPIE. 1750, 27–33 (1992).
[Crossref]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” A. Kokhanovsky, ed. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books, 2013), pp. 189–224.

Zaneveld, J.R. V.

J. C. Kitchen and J.R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

Zielinski, A.

K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[Crossref]

Appl. Opt. (10)

R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18(5), 585–588 (1979).
[Crossref] [PubMed]

O. Svensen, O. Frette, and S. R. Erga, “Scattering properties of microalgae: the effect of cell size and cell wall,” Appl. Opt. 46(23), 5762–5769 (2007).
[Crossref] [PubMed]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001).
[Crossref]

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986).
[Crossref] [PubMed]

R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, “Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates,” Appl. Opt. 42(3), 526–541 (2003).
[Crossref] [PubMed]

M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39(6), 1026–1031 (2000).
[Crossref]

Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995).
[Crossref] [PubMed]

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42(9), 1710–1720 (2003).
[Crossref] [PubMed]

S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine participates: a flow cytometric approach,” Appl. Opt. 27(7), 1270–1277 (1988).
[Crossref] [PubMed]

H. R. Gordon, “Backscattering of light from disklike particles: is fine-scale structure or gross morphology more important,” Appl. Opt. 45(27), 7166–7173 (2006).
[Crossref] [PubMed]

Archives of biochemistry and biophysics. (1)

E. Charney and F. S. Brackett, “The spectral dependence of scattering from a spherical alga and its implications for the state of organization of the light-accepting pigments,” Archives of biochemistry and biophysics. 92, 1–12 (1961).
[Crossref] [PubMed]

Biogeosci. (1)

M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas, “High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing,” Biogeosci. 12(13), 4051–4066 (2015).
[Crossref]

Biogeosci. Discuss. (2)

M. W. Matthews and S. Bernard, “Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of M. aeruginosa,” Biogeosci. Discuss. 10(6), 10531–10579 (2013).
[Crossref]

S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosci. Discuss. 6, 1497–1563 (2009).
[Crossref]

Biophysical journal. (1)

R. A. Meyer and A. Brunsting, “Light scattering from nucleated biological cells,” Biophysical journal. 15, 191–203 (1975).
[Crossref] [PubMed]

Can. Bull. Fish. Aquat. Sci. (1)

A. Morel and A. Bricaud, “Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

Computer Physics Communications. (1)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Computer Physics Communications. 180(11), 2348–2354 (2009).
[Crossref]

Cytometry. (1)

G. B. J. Dubelaar, J. W. Visser, and M. Donze, “Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles,” Cytometry. 8(4), 405–412 (1987).
[Crossref] [PubMed]

Deep-Sea Res. (2)

Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11/12), 1835–1855 (1992).
[Crossref]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A(11), 1375–1393 (1981).

Deep-Sea Research Part I: Oceanographic Research Papers. (1)

A. Engel, “Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes,” Deep-Sea Research Part I: Oceanographic Research Papers. 51(1), 83–92 (2004).
[Crossref]

Frontiers in Microbiology. (1)

M. Dugenne, M. Thyssen, D. Nerini, C. Mante, J.-C. Poggiale, N. Garcia, F. Garcia, and G. Grégori, “Consequence of a sudden wind event on the dynamics of a coastal phytoplankton community: an insight into specific population growth rates using a single cell high frequency approach,” Frontiers in Microbiology. 5, 1–14 (2014).
[Crossref]

J. Geophys. Res. (1)

J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res. 100(C7), 309–313 (1995).

J. Mar. Res. (1)

A. Morel and Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[Crossref]

J. Plankton Res. (4)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

A. Engel, “The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom,” J. Plankton Res. 22(3), 485–497 (2000).
[Crossref]

A. Bricaud, A. L. Bédhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988).
[Crossref]

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (7)

G. Chen, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Scattering phase functions of horizontally oriented hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transf. 100, 91–102 (2006).
[Crossref]

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

A. Quirantes and A. V. Delgado, “Scattering cross sections of randomly oriented coated spheroids,” J. Quant. Spectrosc. Radiat. Transf. 70, 261–272 (2001).
[Crossref]

D. W. Mackowski and M. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Y. L. Xu and B. A. S. Gustafson, “A generalized multiparticle Mie-solution: Further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70, 395–419 (2001).
[Crossref]

A. Quirantes and S. Bernard, “Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf. 100, 315–324 (2006).
[Crossref]

A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89, 311–321 (2004).
[Crossref]

Limnol. Oceanogr. (12)

J. C. Kitchen and J.R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992).
[Crossref]

R. W. Preisendorfer, “Secchi disk science: Visual optics of natural waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
[Crossref]

M. S. Quinby-Hunt and A. J. Hunt, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989).
[Crossref]

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: A database of single-particle optical properties,” Limnol. Oceanogr. 42(3), 538–549 (1997).
[Crossref]

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48(6), 2377–2391 (2003).
[Crossref]

H. Volten, J. F. D. Haan, and J. W. Hovenier, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Optical Efficiency Factors of Some Phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983).
[Crossref]

K. J. Voss, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43(5), 870–876 (1998).
[Crossref]

K. Witkowski, T. Król, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998).
[Crossref]

K. Witkowski, L. Woliriski, and Z. Turzyliski, “The investigation of kinetic growth of Chlorella vulgaris cells by the method of integral and dynamic light scattering,” Limnol. Oceanogr. 38(7), 1365–1372 (1993).
[Crossref]

K. L. Carder, R. D. Tomlinson, and C. F. Beadsley, “A technique for the estimation of indices of refraction of marine phytoplankters,” Limnol. Oceanogr. 17(6), 833–839 (1972).
[Crossref]

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46(6), 1438–1454 (2001).
[Crossref]

Marine Biology. (2)

F. C. Stephens, “Variability of spectral absorption efficiency within living cells of Pyrocystis lunula (Dinophyta),” Marine Biology. 122, 325–331 (1995).

R. J. Geider and B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Marine Biology. 96(2), 299–308 (1987).
[Crossref]

Oceanography and Marine Biology. (1)

W. J. Clavano, E. S. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles-from theory to observation,” Oceanography and Marine Biology. 45, 1–38 (2007).

Opt. Express. (3)

L. Duforêt-Gaurier, W. Moutier, N. Guiselin, M. Thyssen, G. B. J. Dubelaar, X. Mériaux, L. Courcot, D. Dessailly, and H. Loisel, “Determination of backscattering cross section of individual particles from cytometric measurements: a new methodology,” Opt. Express. 23(24), 31510–31533 (2015).
[Crossref] [PubMed]

A. L. Whitmire, W. S. Pegau, and L. Karp-Boss, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express. 18(14), 1680–1690 (2010).
[Crossref]

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express. 20(19), 21532–21551 (2012).
[Crossref]

Proc. SPIE. (1)

A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” Proc. SPIE. 1750, 27–33 (1992).
[Crossref]

Prog. Oceanogr. (1)

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[Crossref]

Scientia Marina. (1)

G. B. J. Dubelaar and R. R. Jonker, “Flow cytometry as a tool for the study of phytoplankton,” Scientia Marina. 64(2), 135–156, (2000).
[Crossref]

Other (5)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light of Small Particles (Cambridge University, 2002).

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Measuring optical backscattering in water,” A. Kokhanovsky, ed. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface (Springer Praxis Books, 2013), pp. 189–224.

J. L. Mueller, The influence of phytoplankton on ocean color spectra (Ph.D Thesis, Oregon State University., Corvallis, 1974).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1:
Fig. 1: Coordinate systems defined for a) a prolate and b) an oblate cylinder, incidence geometry and scattering configuration. L{X,Y,Z} is the laboratory reference frame with Z-axis along the propagating direction of the incident beam (bold arrow). P{Xp,Yp,Zp} is the particle reference frame. The particle flows up following the sheath fluid.
Fig. 2:
Fig. 2: Scanning electron microscopy images of a) side and b) top view of Thalassiosira pseudonana; c) single cell of Chlamydomonas concordia; and d) aggregate form of Chlamydomonas concordia (for the fourth day of the experiment).
Fig. 3:
Fig. 3: Color contour plots Z13/Z11 (%), vs the zenith and the azimuth angles for monodisperse a) prolate (EPS = 0.7) and b) oblate (EPS = 1.3) cylinders in a fixed orientation with an surface equivalent sphere radius of 3 µm in fixed orientation. The refractive index is 1.05 + i0.01.
Fig. 4:
Fig. 4: Color contour plots Z13/Z11 (%), vs the zenith and the azimuth angles for monodisperse aggregate for cluster a) C9 and b) C8a in a fixed orientation. The diameter and refractive index of each sphere are 4 µm and 1.05 + i0.01, respectively.
Fig. 5:
Fig. 5: Elements Z11 (solid lines) and Z13 (dotted lines) of the phase matrix (after integration according to the azimuth angle) as a function of the zenith angle for the cluster C8a and C9.
Fig. 6:
Fig. 6: Probability density function of (a) forward (b) sideward cross sections (µm2) and (c) diameter of Thalassiosira pseudonana the fourth day experiment (21667 values). The dotted lines correspond to the median values.
Fig. 7:
Fig. 7: Probability density function of (a) forward (b) sideward cross sections (µm2) and (c) diameter of Chlamydomonas concordia the fourth day experiment (4638 values). The dotted lines correspond to the median values.
Fig. 8:
Fig. 8: Probability density function of (a) forward and (b) sideward cross sections (µm2) simulated according to different models. The models plotted are: homogeneous sphere (gray), 80%cyto−18.625%chl−1.375%Si (red) and 80%cyto−15%chl−5%Si (green). The dotted lines are PDF derived from the Cytosense measurements of THAL, equivalent at the Fig. 6. The red dotted vertical lines correspond to the median of Cytosense measurements.
Fig. 9:
Fig. 9: Probability density function of (a) forward and (b) sideward cross sections (µm2) simulated according to different models. The plotted models are: homogeneous sphere (gray), 70%cyto−30%chl (red) and 80%cyto−20%chl (green). The dotted lines are PDF derived from the Cytosense measurements of CHLAM, equivalent at the Fig. 7. The red dotted vertical lines correspond to the median of Cytosense measurements.
Fig. 10:
Fig. 10: (a) The forward and (b) sideward cross sections for aggregates with a symmetric plane (empty circle) without a symmetric plane (cross) and surface equivalent homogeneous sphere (SEHS; empty triangle) as a function of the size parameter (s).
Fig. 11:
Fig. 11: Length of THAL from the optical microscope (solid lines) and from the Cytosense (long dashed lines) for a) the 4th and b) the 13th day of the experiment. The vertical dashed lines represent the medians values.
Fig. 12:
Fig. 12: Cytogram of the total forward (a.u) as a function of the forward length (µm) as estimated from the Cytoclus software. The two dashed black ellipses encompass approximatively the aggregate and single cells. Color bar represent the cells density.
Fig. 13:
Fig. 13: Equivalent diameter of THAL from the optical microscope (solid lines) and longer axis from the Cytosense (long dashed lines) for a) the 4th and b) the 13th day of the experiment. The vertical dashed lines represent the medians values.

Tables (4)

Tables Icon

Table 1: Position (xp, yp, zp) of each sphere composing the simulated aggregate in the particle frame. C stands for Cluster, the number indicates the number of spheres composing the aggregate and the letter stands for a given configuration

Tables Icon

Table 2: The mean absolute relative difference (%) between the σSSC or σ b b values obtained considering the Z13 term and without considering Z13 for different aggregate configurations.

Tables Icon

Table 3: The mean values of the backscattering cross sections (µm2) for THAL and CHLAM during the exponential phase according to different parametrizations. Note that P3 is applied only for THAL as CHLAM are naked cells.

Tables Icon

Table 4: The mean values of the efficiency factor for THAL and CHLAM during the exponential phase according to different parametrizations. Note that P3 is applied only for THAL as CHLAM are naked cells.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

σ s c a ( λ ) = r 2 I i n c ( λ , n i n c ) 4 π d n s c a I s c a ( λ , n s c a ) ,
I s c a = 1 r 2 ( Z 11 I i n c + Z 12 Q i n c + Z 13 U i n c + Z 14 V i n c ) .
Z ˜ = ( Z 11 Z 12 Z 13 Z 14 Z 21 Z 22 Z 23 Z 24 Z 31 Z 32 Z 33 Z 34 Z 41 Z 42 Z 43 Z 44 ) .
Z ˜ ( λ , n s c a , n i n c ) = F ˜ ( λ , θ ) L ˜ ( ϕ ) = ( F 11 ( λ , θ ) F 12 ( λ , θ ) cos 2 ϕ F 12 ( λ , θ ) sin 2 ϕ 0 F 12 ( λ , θ ) F 22 ( λ , θ ) cos 2 ϕ F 22 ( λ , θ ) sin 2 ϕ 0 0 F 33 ( λ , θ ) sin 2 ϕ F 33 ( λ , θ ) cos 2 ϕ F 34 ( λ , θ ) 0 F 34 ( λ , θ ) sin 2 ϕ F 34 ( λ , θ ) cos 2 ϕ F 44 ( λ , θ ) ) ,
σ S S C ( λ ) = 2 π 45 ° 135 ° F 11 ( λ , θ ) sin ( θ ) d θ .
σ b b ( λ ) = 2 π 90 ° 180 ° F 11 ( λ , θ ) sin ( θ ) d θ .
Z 11 ( λ , θ , ϕ ) I + ( 2 α 1 ) Z 13 ( λ , θ , ϕ ) I ,
σ S S C ( λ ) = 0 ° 360 ° 45 ° 135 ° ( Z 11 ( λ , θ , ϕ ) + ( 2 α ) Z 13 ( λ , θ , ϕ ) ) sin ( θ ) d θ d ϕ .
Q S S C = 4 σ S S C π D 2 .
j m j v j = m m ,
σ b b ( 488 ) = 10 0.6 × σ S S C ( 488 ) 1.09 ( R 2 = 0.9 ) .
( P 1 ) σ b b ( 488 ) = 10 0.77 × σ S S C ( 488 ) 1.16 ( R 2 = 0.96 )
( P 2 ) σ b b ( 488 ) = 10 0.56 × σ S S C ( 488 ) 1.1 ( R 2 = 0.98 )
( P 3 ) σ b b ( 488 ) = 10 0.59 × σ S S C ( 488 ) 1.04 ( R 2 = 0.82 ) .
D e = l M i c 2 2 + ( l M i c × L m i c ) ,

Metrics