Abstract

A transparent retro-reflective screen, which can be used as head-up-display (HUD) or a see-through screen for head mounted projection displays (HMPD) is proposed. The high optical gain of screen enables the use of low power projectors to produce very bright content. The screen assembly is based on retro-reflective microspheres, patterned on an optically clear substrate using steel stencil as a shadow mask. The incident light is retro-reflected as a narrow angular cone to create an eyebox for the viewer. The optical gain and transparency of screen is varied by changing the fill factor of the mask. The optical design and fabrication of the screen is presented. The retro-reflective and transmission characteristics of screen are evaluated. The impact of fill factor on screen luminance and transparency is studied. The screen provides high luminance (up to 280cd/m2 with 50% transparency) from about 40cm to >3m when used with a low power (15 lumen) mobile projector. Unlike regular diffusers, luminance remains nearly constant with projection distance. Furthermore, the screen offers prominent see-through capability with small degradation in modulation transfer function for transmitted light. For a particular camera and imaging configuration, MTF10 (10% cutoff) for 50% transparent screen is reduced from 37 cyc/deg to 30 cyc/deg when screen is inserted at an intermediate distance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-efficient augmented reality 3D display using highly transparent retro-reflective screen

Shoaib R. Soomro and Hakan Urey
Appl. Opt. 56(22) 6108-6113 (2017)

Transmission characteristics of a bidirectional transparent screen based on reflective microlenses

M. Kivanc Hedili, Mark O. Freeman, and Hakan Urey
Opt. Express 21(21) 24636-24646 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).
  2. C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).
  3. M. K. Hedili, M. O. Freeman, and H. Urey, “Transmission characteristics of a bidirectional transparent screen based on reflective microlenses,” Opt. Express 21(21), 24636–24646 (2013).
  4. K. Hong, J. Yeom, C. Jang, G. Li, J. Hong, and B. Lee, “Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements,” Opt. Express 22(12), 14363–14374 (2014).
  5. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127–130 (2014).
  6. D. Héricz, T. Sarkadi, V. Lucza, V. Kovács, and P. Koppa, “Investigation of a 3D head-mounted projection display using retro-reflective screen,” Opt. Express 22(15), 17823–17829 (2014).
  7. P. Harman, “Retroreflective screens and their application to Autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).
  8. H. Hua, C. Gao, and J. P. Rolland, “Imaging properties of retroreflective materials used in head-mounted projective displays (HMPDs),” Proc. SPIE 4711, 194–201 (2002).
  9. J. Lloyd, “A brief history of retroreflective sign face sheet materials,” The Retroreflective Equipment Manufacturers Association: Lancashire, UK http://www.rema.org.uk/ . Accessed on 11th January 2016.
  10. J. J. Snyder, “Paraxial ray analysis of a cat’s-eye retroreflector,” Appl. Opt. 14(8), 1825–1828 (1975).
  11. Colesafety International, “Reflective glass microbeads,” http://www.colesafety.com/Reflective-Glass-Beads-Type-I_c17.htm .
  12. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), Chap. 8.
  13. P. M. Estribeau, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted edge methodology,” Proc. SPIE 5251, 243–252 (2004).
  14. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986).

2014 (4)

2013 (1)

2006 (1)

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

2004 (1)

P. M. Estribeau, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted edge methodology,” Proc. SPIE 5251, 243–252 (2004).

2002 (1)

H. Hua, C. Gao, and J. P. Rolland, “Imaging properties of retroreflective materials used in head-mounted projective displays (HMPDs),” Proc. SPIE 4711, 194–201 (2002).

1997 (1)

P. Harman, “Retroreflective screens and their application to Autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).

1986 (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986).

1975 (1)

Becker, E

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Canny, J.

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986).

DeLacy, B. G.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Estribeau, P. M.

P. M. Estribeau, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted edge methodology,” Proc. SPIE 5251, 243–252 (2004).

Freeman, M. O.

Gao, C.

H. Hua, C. Gao, and J. P. Rolland, “Imaging properties of retroreflective materials used in head-mounted projective displays (HMPDs),” Proc. SPIE 4711, 194–201 (2002).

Harman, P.

P. Harman, “Retroreflective screens and their application to Autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).

Hedili, M. K.

Héricz, D.

Hong, J.

Hong, K.

Hsu, C. W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Hua, H.

H. Hua, C. Gao, and J. P. Rolland, “Imaging properties of retroreflective materials used in head-mounted projective displays (HMPDs),” Proc. SPIE 4711, 194–201 (2002).

Jang, C.

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Johannes, H. H

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Koppa, P.

Kovács, V.

Kowalsky, W

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Kröger, M

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Lee, B.

Li, G.

Lucza, V.

Meyer, J

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Patrick, G

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Qiu, W.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Riedl, T

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Rolland, J. P.

H. Hua, C. Gao, and J. P. Rolland, “Imaging properties of retroreflective materials used in head-mounted projective displays (HMPDs),” Proc. SPIE 4711, 194–201 (2002).

Sander, M

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Sarkadi, T.

Shapira, O.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Snyder, J. J.

Soljacic, M.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Urey, H.

Yeom, J.

Zhen, B.

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Adv. Mater. (1)

G Patrick, M Sander, J Meyer, M Kröger, E Becker, H. H Johannes, W Kowalsky, and T Riedl, “Towards see‐through displays: fully transparent thin‐film transistors driving transparent organic light‐emitting diodes,” Adv. Mater. 18(6), 738–741 (2006).

Appl. Opt. (1)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986).

Nat. Commun. (1)

C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljačić, “Transparent displays enabled by resonant nanoparticle scattering,” Nat. Commun. 5, 3152 (2014).

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (3)

P. Harman, “Retroreflective screens and their application to Autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).

H. Hua, C. Gao, and J. P. Rolland, “Imaging properties of retroreflective materials used in head-mounted projective displays (HMPDs),” Proc. SPIE 4711, 194–201 (2002).

P. M. Estribeau, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted edge methodology,” Proc. SPIE 5251, 243–252 (2004).

Other (3)

Colesafety International, “Reflective glass microbeads,” http://www.colesafety.com/Reflective-Glass-Beads-Type-I_c17.htm .

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), Chap. 8.

J. Lloyd, “A brief history of retroreflective sign face sheet materials,” The Retroreflective Equipment Manufacturers Association: Lancashire, UK http://www.rema.org.uk/ . Accessed on 11th January 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) A viewer using transparent retro-reflective screen with a laser pico projector based HMPD, (b) shows the perceived content when viewer’s eye is close to projector, and (c) microscopic view of screen (75% transparent) showing retro-reflective microspheres.
Fig. 2
Fig. 2 Illustrates the fabrication process of transparent retro-reflective screen, (i) optically clear substrate (200 µm) preparation, (ii) thin (20 µm) adhesive coating, (iii) flexible mask (steel stencil) bonding and alignment, (iv) retro-reflective microspheres raining, (v) mask removal, and (vi) transferred periodic pattern with retro-reflective microspheres.
Fig. 3
Fig. 3 (a) Illustrates the viewing angle formed by viewer’s eye with respect to screen and projector, and (b) shows the illustration of photometric setup used to measure the retro-reflective coefficient of transparent screen.
Fig. 4
Fig. 4 Experimentally recorded retro-reflective coefficient for three different screen samples, the coefficient value is decreased with increasing screen transparency, while the shape of retro-reflective cone is unaffected.
Fig. 5
Fig. 5 Shows luminance performance (a) and optical gain (b) of three different version of screens (50%, 75% and 90% transparency) when eye-projector distance (s) is 2cm and 5cm.
Fig. 6
Fig. 6 Shows the entrance angle of different version of transparent retro-reflective screen. The intensity of retro-reflected light remains nearly constant within wide range of incident angles (−75 to + 75 degrees).
Fig. 7
Fig. 7 (a) Shows the experimental setup used to measure transmission MTF of screen, (b) Shows the captured edge profile through 75% transparent screen, (c) shows the recovered edge spread function (ESF), and (d) shows corresponding point spread function (PSF).
Fig. 8
Fig. 8 Shows measured transmission MTF for changing screen transparency. MTF50 (50% cutoff) is reduced from 18 cyc/degree to 8 cyc/deg and MTF10 (10% cutoff) is reduced from 37cyc/deg to 30cyc/deg when screen transparency is decreased to 50%.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T=1 x 2 (x+y) 2
α= tan 1 ( s d )
R c ( α )= P d ( α ) 0.5× P s
L d = P l π(k× d 2 )
L r = R c ( α ) P l ψ(k× d 2 )
G= L r L d

Metrics