Abstract

Diffractive waveplates and equivalent metasurfaces provide a promising path for applications in thin film beam steering, tunable lenses, and polarization filters. However, fixed metasurfaces alone are unable to be tuned electronically. By combining metasurfaces with tunable liquid crystals, we experimentally demonstrate a single layer device capable of electrically switching a diffractive waveplate design at a measured peak diffraction efficiency of 35%, and a minimum switching voltage of 10V. Furthermore, the nano-scale metasurface aligned liquid crystals are largely independent of variations in wavelength and temperature. We also present a computational analysis of the efficiency limits of liquid crystal based diffractive waveplates, and compare this analysis to experimental measurements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate

Haiwei Chen, Yishi Weng, Daming Xu, Nelson V. Tabiryan, and Shin-Tson Wu
Opt. Express 24(7) 7287-7298 (2016)

Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates

Fangwang Gou, Fenglin Peng, Qitian Ru, Yun-Han Lee, Haiwei Chen, Ziqian He, Tao Zhan, Konstantin L. Vodopyanov, and Shin-Tson Wu
Opt. Express 25(19) 22404-22410 (2017)

Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film

Shie-Chang Jeng, Shug-June Hwang, Jing-Shyang Horng, and Kuo-Ren Lin
Opt. Express 18(25) 26325-26331 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
    [Crossref] [PubMed]
  2. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  3. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  4. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
    [Crossref] [PubMed]
  5. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
    [Crossref]
  6. G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
    [Crossref]
  7. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
    [Crossref] [PubMed]
  8. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
    [Crossref] [PubMed]
  9. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  10. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  11. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
    [Crossref]
  12. H. Sarkissian, J. B. Park, B. Y. Zeldovich, and N. V. Tabirian, “Periodically aligned liquid crystal: potential application for projection displays,” ArXivcond-Mat0508555 (2005).
    [Crossref]
  13. L. Tan, J. Y. Ho, and H.-S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 051107 (2012).
    [Crossref]
  14. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72(4), 507 (1982).
    [Crossref]
  15. H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Concept for a transmissive, large angle, light steering device with high efficiency,” Opt. Lett. 40(9), 2080–2083 (2015).
    [Crossref] [PubMed]
  16. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  17. S. A. Vitale and S. Berry, “Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas,” J. Vac. Sci. Technol. B 31(2), 021210 (2013).
    [Crossref]
  18. I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
    [Crossref] [PubMed]
  19. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]

2016 (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3(6), 628–633 (2016).
[Crossref]

2015 (2)

2014 (1)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

2013 (2)

S. A. Vitale and S. Berry, “Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas,” J. Vac. Sci. Technol. B 31(2), 021210 (2013).
[Crossref]

L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
[Crossref] [PubMed]

2012 (3)

L. Tan, J. Y. Ho, and H.-S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 051107 (2012).
[Crossref]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2007 (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

2006 (2)

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

1991 (1)

I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
[Crossref] [PubMed]

1982 (1)

Arbabi, A.

Arbabi, E.

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Berry, S.

S. A. Vitale and S. Berry, “Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas,” J. Vac. Sci. Technol. B 31(2), 021210 (2013).
[Crossref]

Bhowmik, A. K.

Bos, P. J.

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Bryant, D.

Bunning, T. J.

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Cheng, H. H.

Chuang, I.

I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Durrer, R.

I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
[Crossref] [PubMed]

Escuti, M. J.

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Faraon, A.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Haddock, J. N.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hakobyan, R. S.

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Ho, J. Y.

L. Tan, J. Y. Ho, and H.-S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 051107 (2012).
[Crossref]

Hoke, L.

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Horie, Y.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Kamali, S. M.

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kimball, B. R.

Kippelen, B.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kwok, H.-S.

L. Tan, J. Y. Ho, and H.-S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 051107 (2012).
[Crossref]

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Li, L.

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Mathine, D. L.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Meredith, G.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Nersisyan, S.

Nersisyan, S. R.

Oh, C.

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Peyghambarian, N.

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Roberts, D. E.

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Serak, S. V.

Steeves, D. M.

Tabiryan, N.

Tabiryan, N. V.

Tan, L.

L. Tan, J. Y. Ho, and H.-S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 051107 (2012).
[Crossref]

Turok, N.

I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
[Crossref] [PubMed]

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

Van Heugten, T.

Vitale, S. A.

S. A. Vitale and S. Berry, “Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas,” J. Vac. Sci. Technol. B 31(2), 021210 (2013).
[Crossref]

White, T. J.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Yeh, P.

Yurke, B.

I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett. 89(14), 141120 (2006).
[Crossref]

L. Tan, J. Y. Ho, and H.-S. Kwok, “Extended Jones matrix method for oblique incidence study of polarization gratings,” Appl. Phys. Lett. 101(5), 051107 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

S. A. Vitale and S. Berry, “Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas,” J. Vac. Sci. Technol. B 31(2), 021210 (2013).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Science (3)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

I. Chuang, R. Durrer, N. Turok, and B. Yurke, “Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals,” Science 251(4999), 1336–1342 (1991).
[Crossref] [PubMed]

Other (1)

H. Sarkissian, J. B. Park, B. Y. Zeldovich, and N. V. Tabirian, “Periodically aligned liquid crystal: potential application for projection displays,” ArXivcond-Mat0508555 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Shows the schematic of the rotation orientation of the liquid crystal direction. The ideal operation of the CDW is shown with non-polarized (b) and circularly polarized (c) inputs.
Fig. 2
Fig. 2 Metric definitions for diffraction efficiency (a), (b), and polarization efficiency (c), (d).
Fig. 3
Fig. 3 FDTD simulated DE for a CDW liquid crystal cell with a thickness equal to the half-wave condition at wavelengths of (a) 405 nm and (b) 600 nm. The DE values are labeled in line as a function of both the M1 diffraction angle and the liquid crystal Δn.
Fig. 4
Fig. 4 Fabrication process flow of the ITO etched CDW liquid crystal cell.
Fig. 5
Fig. 5 (a) Schematic of the fabricated pattern variations. SEM image of e-beam defined etched ITO CDW ridges at step 5 in Fig. 4 at a pixel/period length of (b) 150 nm/900 nm and (c) 450 nm/2700 nm. Scale bars are 100 nm.
Fig. 6
Fig. 6 Schematic of the measurement setup to characterize the CDW performance.
Fig. 7
Fig. 7 The measured intensity profile of the (a) M0 and (b) M1 mode with a 1kHz sine wave with a peak-to-peak amplitude of 0V and 10V.
Fig. 8
Fig. 8 Measured (a) DE and (b) PE performance of the fabricated CDW liquid crystal cells at 3 different pixel widths of 150 nm, 300 nm, and 450 nm at 0V. The green dashed line is the etched ITO surface only with no liquid crystal and a pixel size of 300 nm. The black dashed line is the FDTD simulated max DE from Fig. 3(a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t= λ 2Δn

Metrics