Abstract

Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic microwave waveforms generation based on time-domain processing

Yang Jiang, Chuang Ma, Guangfu Bai, Xiaosi Qi, Yanlin Tang, Zhenrong Jia, Yuejiao Zi, Fengqin Huang, and Tingwei Wu
Opt. Express 23(15) 19442-19452 (2015)

Photonic arbitrary waveform generation based on crossed frequency to time mapping

H.-Y. Jiang, L.-S. Yan, Y.-F. Sun, J. Ye, W. Pan, B. Luo, and X.-H. Zou
Opt. Express 21(5) 6488-6496 (2013)

A time-domain photonic arbitrary waveform generator

Jinxin Liao, He Wen, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Express 20(11) 12631-12639 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Fang, D.-N. Wang, and S. Li, “Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding,” J. Opt. Soc. Am. B 20(8), 1603–1610 (2003).
    [Crossref]
  2. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  3. A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
    [Crossref]
  4. J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
    [Crossref]
  5. A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
    [Crossref]
  6. F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
    [Crossref]
  7. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
    [Crossref] [PubMed]
  8. B. Bortnik, I. Y. Poberezhskiy, J. Chou, B. Jalali, and H. R. Fetterman, “Predistortion technique for RF-photonic generation of high-power ultrawideband arbitrary waveforms,” J. Lightwave Technol. 24(7), 2752–2759 (2006).
    [Crossref]
  9. F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
    [Crossref]
  10. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
    [Crossref] [PubMed]
  11. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008).
    [Crossref] [PubMed]
  12. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [Crossref] [PubMed]
  13. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
    [Crossref]
  14. H. Shen, L. Fan, L. T. Varghese, D. E. Leaird, A. M. Weiner, and M. Qi, “On-Chip Radio Frequency Arbitrary Waveform Generation,” in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Sceince Conference, (Optical Society of America, 2010), paper CMS2.
  15. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  16. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
    [Crossref] [PubMed]
  17. F. Zhang, J. Wu, Y. Li, and J. Lin, “Flat optical frequency comb generation and its application for optical waveform generation,” Opt. Commun. 290, 37–42 (2013).
    [Crossref]
  18. A. Zhang and C. Li, “Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays,” Opt. Laser Technol. 52, 81–86 (2013).
    [Crossref]
  19. H.-Y. Jiang, L.-S. Yan, Y.-F. Sun, J. Ye, W. Pan, B. Luo, and X.-H. Zou, “Photonic arbitrary waveform generation based on crossed frequency to time mapping,” Opt. Express 21(5), 6488–6496 (2013).
    [Crossref] [PubMed]
  20. A. Zhang and C. Li, “Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays,” Opt. Express 20(21), 23074–23081 (2012).
    [Crossref] [PubMed]
  21. M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photonics Technol. Lett. 16(4), 1155–1157 (2004).
    [Crossref]
  22. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
    [Crossref]
  23. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
    [Crossref] [PubMed]
  24. J. Dong, A. Zheng, D. Gao, S. Liao, L. Lei, D. Huang, and X. Zhang, “High-order photonic differentiator employing on-chip cascaded microring resonators,” Opt. Lett. 38(5), 628–630 (2013).
    [Crossref] [PubMed]
  25. M. H. Asghari and J. Azaña, “Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators,” Opt. Commun. 281(18), 4581–4588 (2008).
    [Crossref]
  26. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  27. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref] [PubMed]

2014 (2)

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (2)

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

A. Zhang and C. Li, “Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays,” Opt. Express 20(21), 23074–23081 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref] [PubMed]

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

2010 (3)

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (1)

2006 (1)

2005 (2)

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[Crossref] [PubMed]

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

2004 (1)

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photonics Technol. Lett. 16(4), 1155–1157 (2004).
[Crossref]

2003 (1)

1993 (1)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
[Crossref]

Agarwal, A.

Ahn, T.-J.

Asghari, M.

Asghari, M. H.

M. H. Asghari and J. Azaña, “Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators,” Opt. Commun. 281(18), 4581–4588 (2008).
[Crossref]

Ayotte, N.

Azaña, J.

M. H. Asghari and J. Azaña, “Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators,” Opt. Commun. 281(18), 4581–4588 (2008).
[Crossref]

R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008).
[Crossref] [PubMed]

Baek, J.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Banwell, T.

Bortnik, B.

Cao, J.

Chazelas, J.

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Chen, N.-W.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Cheung, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Chiang, H.-C.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Chiou, H.-K.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Chou, J.

Chuang, H.-P.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Ding, Y.

Dolfi, D.

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

Dong, J.

Dong, J.-J.

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Dong, P.

Doucet, S.

Fang, X.

Feng, D.

Feng, N. N.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Fetterman, H. R.

Fontaine, N. K.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008).
[Crossref] [PubMed]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[Crossref] [PubMed]

Gaeta, A. L.

Gao, D.

Geisler, D. J.

Gruezke, L. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Hamm, R. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Heritage, J. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008).
[Crossref] [PubMed]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[Crossref] [PubMed]

Huang, C.-B.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Huang, D.

Huang, D.-X.

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Huignard, J.

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

Jalali, B.

Jiang, H.-Y.

Jiang, W.

Jiang, Z.

Junesand, C.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Karalar, A.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Kolner, B. H.

Kuo, F.-M.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

LaRochelle, S.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[Crossref] [PubMed]

Lee, D. C.

Lei, L.

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

J. Dong, A. Zheng, D. Gao, S. Liao, L. Lei, D. Huang, and X. Zhang, “High-order photonic differentiator employing on-chip cascaded microring resonators,” Opt. Lett. 38(5), 628–630 (2013).
[Crossref] [PubMed]

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Levy, J. S.

Li, C.

A. Zhang and C. Li, “Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays,” Opt. Laser Technol. 52, 81–86 (2013).
[Crossref]

A. Zhang and C. Li, “Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays,” Opt. Express 20(21), 23074–23081 (2012).
[Crossref] [PubMed]

Li, S.

Li, Y.

F. Zhang, J. Wu, Y. Li, and J. Lin, “Flat optical frequency comb generation and its application for optical waveform generation,” Opt. Commun. 290, 37–42 (2013).
[Crossref]

Liang, H.

Liao, S.

Lin, J.

F. Zhang, J. Wu, Y. Li, and J. Lin, “Flat optical frequency comb generation and its application for optical waveform generation,” Opt. Commun. 290, 37–42 (2013).
[Crossref]

Liou, K. Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Lipson, M.

Lourdudoss, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Luff, J. B.

Luo, B.

Luo, B.-W.

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Menendez, R.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Minasian, R. A.

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photonics Technol. Lett. 16(4), 1155–1157 (2004).
[Crossref]

Monsterleet, A.

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

Okamoto, K.

Okawachi, Y.

Ou, H.

Pan, C.-L.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Pan, W.

Park, Y.

Patel, B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Peucheret, C.

Poberezhskiy, I. Y.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Qian, W.

Saha, K.

Sapé, P.

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

Scott, R. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008).
[Crossref] [PubMed]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[Crossref] [PubMed]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Shen, M.

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photonics Technol. Lett. 16(4), 1155–1157 (2004).
[Crossref]

Shi, J.-W.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Slavík, R.

Soares, F. M.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Soref, R. A.

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
[Crossref]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Su, T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Sun, Y.-F.

Toliver, P.

Tonda-Goldstein, S.

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

Tsai, H.-J.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

Tsang, W. T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Wang, D.-N.

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Wang, W.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Wang, Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[Crossref] [PubMed]

Wen, Y. H.

Woodward, T. K.

Wu, J.

F. Zhang, J. Wu, Y. Li, and J. Lin, “Flat optical frequency comb generation and its application for optical waveform generation,” Opt. Commun. 290, 37–42 (2013).
[Crossref]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Yan, L.-S.

Yang, C.

Yang, T.

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

Ye, J.

Yoo, S. J.

Yoo, S. J. B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Yvind, K.

Zhang, A.

A. Zhang and C. Li, “Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays,” Opt. Laser Technol. 52, 81–86 (2013).
[Crossref]

A. Zhang and C. Li, “Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays,” Opt. Express 20(21), 23074–23081 (2012).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, J. Wu, Y. Li, and J. Lin, “Flat optical frequency comb generation and its application for optical waveform generation,” Opt. Commun. 290, 37–42 (2013).
[Crossref]

Zhang, X.

Zhang, X.-L.

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Zhang, Y.

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zheng, A.

Zheng, A.-L.

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

Zhou, X.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

Zou, X.-H.

Chin. Phys. B (1)

A.-L. Zheng, J.-J. Dong, L. Lei, T. Yang, and X.-L. Zhang, “Diversity of photonic differentiators based on flexible demodulation of phase signals,” Chin. Phys. B 23(3), 033201 (2014).
[Crossref]

Chin. Phys. Lett. (1)

J.-J. Dong, B.-W. Luo, Y. Zhang, L. Lei, D.-X. Huang, and X.-L. Zhang, “All-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,” Chin. Phys. Lett. 29(1), 014203 (2012).
[Crossref]

Electron. Lett. (1)

A. Monsterleet, S. Tonda-Goldstein, D. Dolfi, J. Huignard, P. Sapé, and J. Chazelas, “Optically generated arbitrary waveforms for radar applications,” Electron. Lett. 41(6), 332–334 (2005).
[Crossref]

IEEE Photonics J. (2)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photonics J. 3(6), 975–985 (2011).
[Crossref]

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100 GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photonics J. 2(5), 719–727 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Shen and R. A. Minasian, “Toward a high-speed arbitrary waveform generation by a novel photonic processing structure,” IEEE Photonics Technol. Lett. 16(4), 1155–1157 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Opt. Commun. (3)

F. Zhang, J. Wu, Y. Li, and J. Lin, “Flat optical frequency comb generation and its application for optical waveform generation,” Opt. Commun. 290, 37–42 (2013).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

M. H. Asghari and J. Azaña, “Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators,” Opt. Commun. 281(18), 4581–4588 (2008).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

A. Zhang and C. Li, “Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays,” Opt. Laser Technol. 52, 81–86 (2013).
[Crossref]

Opt. Lett. (6)

Proc. IEEE (1)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
[Crossref]

Other (1)

H. Shen, L. Fan, L. T. Varghese, D. E. Leaird, A. M. Weiner, and M. Qi, “On-Chip Radio Frequency Arbitrary Waveform Generation,” in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Sceince Conference, (Optical Society of America, 2010), paper CMS2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagrams of arbitrary waveform generations by Fourier synthesis method and Taylor synthesis method.
Fig. 2
Fig. 2 Schematic diagram of the proposed on-chip pulse shaper.
Fig. 3
Fig. 3 Simulated waveforms (blue solid line) of the pulse shaper and the ideal ones (red dash line) of (a) input Gaussian pulse, (b) square waveform (the amplitude array and phase array are [1, 0.27, 0.32, 0.09] and [0, 0.5π, 0, 0.5π], respectively), (c) isosceles triangular waveform (the amplitude array and phase array are [0.25, 0.15, 1, 0.51] and [0, 0.6π, 0, 1.47π], respectively), (d) super-Gaussian waveform (the amplitude array and phase array are [1, 0.03, 0.31, 0.06], and [0, π, 0, 1.35π], respectively), (e) and (f) sawtooth waveforms (the amplitude array and phase array are [0.41, 0.39, 1, 0.42], [1.1π, 0.99π, 1.38π, 0] and [0.46, 0.79, 1, 0.53], [0, 1.03π, 0.2π, 1.25π], respectively), (g) and (h) oblique triangular waveforms (the amplitude array and phase array are [1, 0.88, 0.88, 0.32], [0, 1.95π, 1.7π, 0] and [1, 0.06, 0.03, 0.09], [1.9π, π, 0, 1.5π], respectively), (i) Gaussian waveform (the amplitude array and phase array are [1, 0, 0.21, 0.02] and [0, 0, 0, 1.3π], respectively) and (j) first-order differentiation (the amplitude array and phase array are [0, 1, 0, 0] and [0, 0, 0, 0], respectively).
Fig. 4
Fig. 4 Metallurgical microscopy image of the on-chip pulse shaper, (a) whole graph, details of (b) MZI and (c) MRR.
Fig. 5
Fig. 5 Experimental setup of the arbitrary waveform generation with employing the on-chip pulse shaper. (TLD: tunable laser diode, PC: polarization controller, MZM: Mach-Zehnder modulator, BPG: bit pattern generator, EA: electronic amplifier, OTDL: optical time delay, EDFA: erbium-doped fiber amplifier, OSC: oscilloscope).
Fig. 6
Fig. 6 Measured waveforms (blue solid line) of the pulse shaper and ideal ones (red dash line) of (a) input Gaussian pulse, (b) square waveform, (c) isosceles triangular waveform, (d) super-Gaussian waveform, (e) and (f) sawtooth waveform, (g) and (h) oblique triangular waveform, (i) Gaussian waveform and (j) first-order differentiation.
Fig. 7
Fig. 7 Average errors of the triangular waveform and square waveform with different taps.
Fig. 8
Fig. 8 (a) Output power varies with the voltage applied on to the electrode (measured power is shown as blue dot and numerical fitting is shown as red solid line), and (b) four examples of different output power of output pulse.

Tables (3)

Tables Icon

Table 1 Amplitude and phase arrays of the simulated waveforms

Tables Icon

Table 2 Amplitude and phase arrays of the measured waveforms

Tables Icon

Table 3 Average errors of the measured waveforms

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f( t )=f( 0 )+ f ( 0 ) 1! t+ f ( 0 ) 2! t 2 + f ( 0 ) 3! t 3 ++ f ( n ) ( 0 ) n! t n + R n ( t )
g ( n ) ( t )= i=0 n A i t i g( t )
B 0 g( t )+ B 1 g ( t )+ B 2 g ( t )+ B 3 g ( t )++ B n g ( n ) ( t ) g( t ) = C 0 + C 1 t+ C 2 t 2 + C 3 t 3 ++ C n t n
a( t )= i=0 3 α i g ( i ) ( t )exp( j φ i )
Error= 1 T T | P m ( t ) P i ( t ) | dt

Metrics