Abstract

We report the experimental manipulation of the group velocities of reflected and transmitted light pulses in a degenerate two-level atomic system driven by a standing wave, which is created by two counter-propagating light beams of equal frequencies but variable amplitudes. It is shown that the light pulse is reflected with superluminal group velocity while the transmitted pulse propagates from subluminal to superluminal velocities via changing the power of the backward coupling field. We find that the simultaneous superluminal light reflection and transmission can be reached when the power of the backward field becomes closer or equal to the forward power, in this case the periodical absorption modulation for photonic structure is established in atoms. The theoretical discussion shows that the anomalous dispersion associated with a resonant absorption dip within the gain peak due to four-wave mixing leads to the superluminal reflection, while the varying dispersion from normal to anomalous at transparency, transparency within absorption, and electromagnetically induced absorption windows leads to the subluminal to superluminal transmission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced four-wave mixing via crossover resonance in cesium vapor

T. Passerat de Silans, C. S. L. Goncalves, D. Felinto, and J. W. R. Tabosa
J. Opt. Soc. Am. B 28(9) 2220-2226 (2011)

Switching from subluminal to superluminal light propagation via a coherent pump field in a four-level atomic system

Shang-qi Kuang, Ren-gang Wan, Jun Kou, Yun Jiang, and Jin-yue Gao
J. Opt. Soc. Am. B 26(12) 2256-2260 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
    [Crossref]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
    [Crossref]
  3. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref] [PubMed]
  4. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref] [PubMed]
  5. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref] [PubMed]
  6. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  7. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62(5), 055801 (2000).
    [Crossref]
  8. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
    [Crossref]
  9. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  11. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
    [Crossref] [PubMed]
  12. K. Bencheikh, E. Baldit, S. Briaudeau, P. Monnier, J. A. Levenson, and G. Mélin, “Slow light propagation in a ring erbium-doped fiber,” Opt. Express 18(25), 25642–25648 (2010).
    [Crossref] [PubMed]
  13. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
    [Crossref] [PubMed]
  14. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
    [Crossref] [PubMed]
  15. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
    [Crossref]
  16. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993).
    [Crossref] [PubMed]
  17. E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
    [Crossref]
  18. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
    [Crossref]
  19. I. H. Bae and H. S. Moon, “Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell,” Phys. Rev. A 83(5), 053806 (2011).
    [Crossref]
  20. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36(12), 2185–2187 (2011).
    [Crossref] [PubMed]
  21. J. Zhang, G. Hernandez, and Y. Zhu, “Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes,” Opt. Lett. 31(17), 2598–2600 (2006).
    [Crossref] [PubMed]
  22. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
    [Crossref] [PubMed]
  23. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
    [Crossref] [PubMed]
  24. A. K. Patnaik, S. Roy, and J. R. Gord, “All-optically controlled concurrent slow-fast light pair,” Opt. Lett. 36(16), 3272–3274 (2011).
    [Crossref] [PubMed]
  25. Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39(12), 3394–3397 (2014).
    [Crossref] [PubMed]
  26. R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108(17), 173902 (2012).
    [Crossref] [PubMed]
  27. P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
    [Crossref] [PubMed]
  28. M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
    [Crossref]
  29. S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3), 037601 (2001).
    [Crossref] [PubMed]
  30. L. G. Wang, H. Chen, and S. Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066602 (2004).
    [Crossref] [PubMed]
  31. S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65(4), 045602 (2002).
    [Crossref]
  32. G. Nimtz, A. Haibel, and R. M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 037602 (2002).
    [Crossref] [PubMed]
  33. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
    [Crossref] [PubMed]
  34. L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
    [Crossref] [PubMed]
  35. D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
    [Crossref] [PubMed]
  36. H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
    [Crossref]
  37. J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
    [Crossref]
  38. C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1(2), 305–313 (1970).
    [Crossref]
  39. S. Q. Kuang, P. Du, R. G. Wang, Y. Jiang, and J. Y. Gao, “Slow light based on coherent hole-burning in a Doppler broadened three-level Λ-type atomic system,” Opt. Express 16(15), 11604–11610 (2008).
    [Crossref] [PubMed]
  40. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2010).

2014 (2)

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39(12), 3394–3397 (2014).
[Crossref] [PubMed]

2013 (1)

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

2012 (2)

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108(17), 173902 (2012).
[Crossref] [PubMed]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

2011 (5)

I. H. Bae and H. S. Moon, “Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell,” Phys. Rev. A 83(5), 053806 (2011).
[Crossref]

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
[Crossref]

K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36(12), 2185–2187 (2011).
[Crossref] [PubMed]

A. K. Patnaik, S. Roy, and J. R. Gord, “All-optically controlled concurrent slow-fast light pair,” Opt. Lett. 36(16), 3272–3274 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

2006 (2)

J. Zhang, G. Hernandez, and Y. Zhu, “Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes,” Opt. Lett. 31(17), 2598–2600 (2006).
[Crossref] [PubMed]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

2004 (2)

L. G. Wang, H. Chen, and S. Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066602 (2004).
[Crossref] [PubMed]

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
[Crossref]

2003 (1)

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

2002 (1)

G. Nimtz, A. Haibel, and R. M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 037602 (2002).
[Crossref] [PubMed]

2001 (5)

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3), 037601 (2001).
[Crossref] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

2000 (2)

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62(5), 055801 (2000).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

1999 (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

1998 (1)

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

1994 (1)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

1993 (1)

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993).
[Crossref] [PubMed]

1982 (1)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

1970 (1)

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1(2), 305–313 (1970).
[Crossref]

Al-Amri, M.

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

Arimondo, E.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
[Crossref] [PubMed]

Bae, I. H.

I. H. Bae and H. S. Moon, “Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell,” Phys. Rev. A 83(5), 053806 (2011).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Baldit, E.

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bencheikh, K.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

K. Bencheikh, E. Baldit, S. Briaudeau, P. Monnier, J. A. Levenson, and G. Mélin, “Slow light propagation in a ring erbium-doped fiber,” Opt. Express 18(25), 25642–25648 (2010).
[Crossref] [PubMed]

Bigot, L.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Blaauboer, M.

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

Boyd, R. W.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

Boyer, V.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
[Crossref] [PubMed]

Briaudeau, S.

Brunstein, M.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Chen, H.

L. G. Wang, H. Chen, and S. Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066602 (2004).
[Crossref] [PubMed]

Chen, Y. C.

Chen, Y. F.

Chiao, R. Y.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993).
[Crossref] [PubMed]

Chu, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Du, P.

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Dumeige, Y.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Evers, J.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Gao, J. Y.

Garrett, C. G. B.

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1(2), 305–313 (1970).
[Crossref]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

Glasser, R. T.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108(17), 173902 (2012).
[Crossref] [PubMed]

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Gord, J. R.

Grinberg, P.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Gu, Z. C.

Guo, M. J.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Haibel, A.

G. Nimtz, A. Haibel, and R. M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 037602 (2002).
[Crossref] [PubMed]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Hernandez, G.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Hsiao, Y. F.

Hu, X.

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Jiang, Y.

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Kim, J. B.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

Kim, K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

Kim, S. K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

Kofman, A. G.

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

Kozhekin, A. E.

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

Kuang, S. Q.

Kurizki, G.

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993).
[Crossref] [PubMed]

Lee, C.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

Lenstra, D.

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

Leonhardt, U.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62(5), 055801 (2000).
[Crossref]

Lett, P. D.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108(17), 173902 (2012).
[Crossref] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
[Crossref] [PubMed]

Levenson, J. A.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

K. Bencheikh, E. Baldit, S. Briaudeau, P. Monnier, J. A. Levenson, and G. Mélin, “Slow light propagation in a ring erbium-doped fiber,” Opt. Express 18(25), 25642–25648 (2010).
[Crossref] [PubMed]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Lin, C. C.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Lodder, A.

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

Longhi, S.

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3), 037601 (2001).
[Crossref] [PubMed]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Luo, S. Y.

McCormick, C. F.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
[Crossref] [PubMed]

McCumber, D. E.

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1(2), 305–313 (1970).
[Crossref]

Mélin, G.

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Mikhailov, E. E.

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
[Crossref]

Monnier, P.

Moon, H. S.

I. H. Bae and H. S. Moon, “Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell,” Phys. Rev. A 83(5), 053806 (2011).
[Crossref]

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Nimtz, G.

G. Nimtz, A. Haibel, and R. M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 037602 (2002).
[Crossref] [PubMed]

Novikova, I.

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
[Crossref]

Pati, G. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Patnaik, A. K.

Peng, J. S.

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Piwnicki, P.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62(5), 055801 (2000).
[Crossref]

Qian, K.

Raineri, F.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Roy, S.

Sagnes, I.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Salit, K.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Salit, M.

Sautenkov, V. A.

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Schweinsberg, A.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Shahriar, M. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993).
[Crossref] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Tsai, P. J.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Vetter, R. M.

G. Nimtz, A. Haibel, and R. M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 037602 (2002).
[Crossref] [PubMed]

Vogl, U.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108(17), 173902 (2012).
[Crossref] [PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

Wang, D.

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

Wang, D. W.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
[Crossref]

Wang, L.

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

Wang, L. G.

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

L. G. Wang, H. Chen, and S. Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066602 (2004).
[Crossref] [PubMed]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Wang, R. G.

Welch, G. R.

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Wong, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

Xia, Y. X.

Xiao, M.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Yacomotti, A. M.

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

Yu, I. A.

Zhan, L.

Zhang, J.

Zhang, J. X.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
[Crossref]

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

Zhang, L.

Zhou, H. T.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
[Crossref]

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

Zhu, S. Y.

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
[Crossref]

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

L. G. Wang, H. Chen, and S. Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066602 (2004).
[Crossref] [PubMed]

Zhu, Y.

Zhu, Z. Q.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Zubairy, M. S.

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

J. Phys. B (1)

H. T. Zhou, M. J. Guo, D. Wang, J. X. Zhang, and S. Y. Zhu, “Angular momentum and two-photon detuning dependence of reflection spectrum on degenerate two-level systems in Cs vapour,” J. Phys. B 44(22), 225503 (2011).
[Crossref]

Nature (5)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (9)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

J. X. Zhang, H. T. Zhou, D. W. Wang, and S. Y. Zhu, “Enhanced reflection via phase compensation from anomalous dispersion in atomic vapor,” Phys. Rev. A 83(5), 053841 (2011).
[Crossref]

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1(2), 305–313 (1970).
[Crossref]

M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, and A. Lodder, “Superluminal optical phase conjugation: pulse reshaping and instability,” Phys. Rev. A 57(6), 4905–4913 (1998).
[Crossref]

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69(6), 063808 (2004).
[Crossref]

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68(1), 013810 (2003).
[Crossref]

I. H. Bae and H. S. Moon, “Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell,” Phys. Rev. A 83(5), 053806 (2011).
[Crossref]

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62(5), 055801 (2000).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

S. Longhi, “Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3), 037601 (2001).
[Crossref] [PubMed]

L. G. Wang, H. Chen, and S. Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066602 (2004).
[Crossref] [PubMed]

G. Nimtz, A. Haibel, and R. M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 037602 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (12)

L. G. Wang, L. Wang, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs,” Phys. Rev. Lett. 112(23), 233601 (2014).
[Crossref] [PubMed]

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99(14), 143601 (2007).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[Crossref]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108(17), 173902 (2012).
[Crossref] [PubMed]

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects,” Phys. Rev. Lett. 109(11), 113903 (2012).
[Crossref] [PubMed]

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993).
[Crossref] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Science (1)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312(5775), 895–897 (2006).
[Crossref] [PubMed]

Other (2)

S. Longhi, M. Marano, P. Laporta, M. Belmonte, and P. Crespi, “Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap,” Phys. Rev. E 65(4), 045602 (2002).
[Crossref]

R. W. Boyd, Nonlinear Optics (Elsevier Science, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A simplified energy level scheme. (b) The schematic of the experimental setup. HWP: half-wave plate; EOM: electro-optic modulator; PBS: polarization beam splitter cube; M: reflecting mirror; PD1, 2, 3: photo detectors.
Fig. 2
Fig. 2 The delay time for (a) probe and (b) reflected pulses.
Fig. 3
Fig. 3 The simultaneous manipulation of the delay for the probe and reflected pulses. The other experimental parameters are the same as those in Fig. 2.
Fig. 4
Fig. 4 The absorption (a) and dispersion (b) properties of the transmitted probe light. The related parameters are γ a c = 0 , γ b c = 1 , Ω F = 10 , Ω p = 1.5.
Fig. 5
Fig. 5 The absorption (a) and dispersion (b) properties of the reflected signal light pulse.
Fig. 6
Fig. 6 The normalized intensity profiles of the transmitted pulses (a) and reflected pulses (b) at the different backward Rabi frequencies.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E p ( 0 , t ) = 1 2 π E x p [ t 2 2 τ 2 ] × E x p [ i ω 0 t ] ,
E p ( 0 , ω p ) = τ 2 π E x p [ τ 2 ( ω p ω 0 ) 2 2 ] ,
E p ( L , t ) = d ω p × E ( 0 , ω p ) × E x p [ i ω p ( t L n ( ω p ) c ) ] ,
n ( ω p ) = n 1 + n 2 E F * E B = n ˜ 1 + n ˜ 2 ,
n ˜ 1 = 1 + 1 2 χ ( 1 ) , n ˜ 2 = 3 8 χ ( 3 ) E F * E B ,
χ ( 1 ) = N | μ b c | 2 ε 0 Ω p 1 2 π σ + ρ ˜ b c [ 0 ] ( Δ p , Δ d ) × exp [ Δ d 2 / ( 2 σ 2 ) ] d Δ d ,
χ ( 3 ) = N | μ b c | 2 | μ b a | 2 6 ε 0 3 Ω B Ω F Ω p 1 2 π σ + ρ ˜ b c [ 1 ] ( Δ p , Δ d ) × exp [ Δ d 2 / ( 2 σ 2 ) ] d Δ d ,
d ρ ˜ b c d t = ( i Δ p + i Δ d γ b c ) ρ ˜ b c + i ( Ω F + Ω B e i 2 Δ d t ) ρ ˜ a c + i Ω p ,
d ρ ˜ a c d t = ( i Δ p γ a c ) ρ ˜ a c + i ( Ω F + Ω B e i 2 Δ d t ) ρ ˜ b c ,
Δ t = L ω p 2 c d χ d ω p ,

Metrics