Abstract

8.4 μm-emitting quantum cascade lasers (QCLs) have been designed to have, right from threshold, both carrier-leakage suppression and miniband-like carrier extraction. The slope-efficiency characteristic temperature T1, the signature of carrier-leakage suppression, is found to be 665 K. Resonant-tunneling carrier extraction from both the lower laser level (ll) and the level below it, coupled with highly effective ll-depopulation provide a very short ll lifetime (~0.12 ps). As a result the laser-transition differential efficiency reaches 89%, and the internal differential efficiency ηid, derived from a variable mirror-loss study, is found to be 86%, in good agreement with theory. A study of 8.8 μm-emitting QCLs also provides an ηid value of 86%. A corrected equation for the external differential efficiency is derived which leads to a fundamental limit of ~90% for the ηid values of mid-infrared QCLs. In turn, the fundamental wallplug-efficiency limits become ~34% higher than previously predicted.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

2 November 2016: A correction was made to Eq. (2).


OSA Recommended Articles
High-efficiency, high-power mid-infrared quantum cascade lasers [Invited]

Dan Botez, Jeremy D. Kirch, Colin Boyle, Kevin M. Oresick, Chris Sigler, Honghyuk Kim, Benjamin B. Knipfer, Jae Ha Ryu, Don Lindberg, Tom Earles, Luke J. Mawst, and Yuri V. Flores
Opt. Mater. Express 8(5) 1378-1398 (2018)

Extraction-controlled terahertz frequency quantum cascade lasers with a diagonal LO-phonon extraction and injection stage

Y. J. Han, L. H. Li, A. Grier, L. Chen, A. Valavanis, J. Zhu, J. R. Freeman, N. Isac, R. Colombelli, P. Dean, A. G. Davies, and E. H. Linfield
Opt. Express 24(25) 28583-28593 (2016)

Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers

Christian Pflügl, Laurent Diehl, Arkadiy Lyakh, Qi Jie Wang, Richard Maulini, Alexei Tsekoun, C. Kumar N. Patel, Xiaojun Wang, and Federico Capasso
Opt. Express 18(2) 746-753 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
    [Crossref]
  2. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
    [Crossref]
  3. S. S. Howard, Z. Liu, and C. F. Gmachl, “Thermal and Stark effect roll-over of quantum-cascade lasers,” IEEE J. Quantum Electron. 44(4), 319–323 (2008).
    [Crossref]
  4. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
    [Crossref]
  5. M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
    [Crossref]
  6. E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
    [Crossref]
  7. D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
    [Crossref]
  8. J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
    [Crossref]
  9. J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
    [Crossref]
  10. P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
    [Crossref]
  11. D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
    [Crossref]
  12. D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
    [Crossref]
  13. A. Hamadou, J.-L. Thobel, and S. Lamari, “Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers,” Opt. Commun. 281(21), 5385–5388 (2008).
    [Crossref]
  14. D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
    [Crossref]
  15. Y. V. Flores, “Mid-infrared quantum cascade lasers: theoretical and experimental studies on temperature driven scattering,” PhD Thesis (Humboldt-Universitat zu Berlin, June 2015).
  16. C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
    [Crossref] [PubMed]
  17. A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm,” Opt. Express 24(16), 18799–18806 (2016).
    [Crossref] [PubMed]
  18. Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
    [Crossref]
  19. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
    [Crossref]
  20. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
    [Crossref] [PubMed]
  21. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
    [Crossref] [PubMed]
  22. A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
    [Crossref]
  23. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  24. C.-C. Chang and D. Botez, as per the calculations in Ref. 7 of the device presented in Ref. 23.
  25. Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
    [Crossref]
  26. V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
    [Crossref]
  27. M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
    [Crossref]
  28. Y. T. Chiu, Y. Dikmelik, Q. Zhang, J. B. Khurgin, and C. F. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest Series (Optical Society of America, 2012), paper CTh3N.1.
    [Crossref]
  29. A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
    [Crossref]
  30. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).
  31. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203–17211 (2011).
    [Crossref] [PubMed]
  32. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12(3), 033045 (2010).
    [Crossref]
  33. T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
    [Crossref]
  34. F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
    [Crossref]
  35. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [Crossref]
  36. M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
    [Crossref]
  37. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
    [Crossref]
  38. H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
    [Crossref]
  39. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
    [Crossref]

2016 (3)

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm,” Opt. Express 24(16), 18799–18806 (2016).
[Crossref] [PubMed]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

2015 (1)

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

2014 (1)

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

2013 (3)

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

2012 (3)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

2011 (3)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203–17211 (2011).
[Crossref] [PubMed]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

2010 (6)

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12(3), 033045 (2010).
[Crossref]

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

2009 (5)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

2008 (4)

A. Hamadou, J.-L. Thobel, and S. Lamari, “Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers,” Opt. Commun. 281(21), 5385–5388 (2008).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

S. S. Howard, Z. Liu, and C. F. Gmachl, “Thermal and Stark effect roll-over of quantum-cascade lasers,” IEEE J. Quantum Electron. 44(4), 319–323 (2008).
[Crossref]

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

2007 (1)

J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[Crossref]

2006 (3)

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

1998 (1)

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

1997 (2)

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

Aellen, T.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Aidam, R.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Aleksandrova, A.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Amann, M.-C.

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

Aung, N. L.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Bahriz, M.

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Bai, Y. B.

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Baranov, A. N.

Beck, M.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Benveniste, E.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Bismuto, A.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[Crossref]

Blaser, S.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

Blood, P.

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

Boehm, G.

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

Bonetti, Y.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

Botez, D.

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

Boyle, C.

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

Caffey, D. P.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Caneau, C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Capasso, F.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Carras, M.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Chang, C.-C.

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

Chashnikova, M.

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

Cheng, L.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Chiu, Y. T.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Cho, A. Y.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Choa, F.-S.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Darvish, S. R.

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Day, T.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Diehl, L.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Dikmelik, Y.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Earles, T.

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

Edamura, T.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Elagin, M.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Faist, J.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12(3), 033045 (2010).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[Crossref]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Figueiredo, P.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Fischer, M.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

Flores, Y.

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

Flores, Y. V.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Forchel, A.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Furuta, S.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Gini, E.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Gini, F.

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

Giovannini, M.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Gmachl, C.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Gmachl, C. F.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

S. S. Howard, Z. Liu, and C. F. Gmachl, “Thermal and Stark effect roll-over of quantum-cascade lasers,” IEEE J. Quantum Electron. 44(4), 319–323 (2008).
[Crossref]

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Go, R.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Gokden, B.

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Hamadou, A.

A. Hamadou, J.-L. Thobel, and S. Lamari, “Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers,” Opt. Commun. 281(21), 5385–5388 (2008).
[Crossref]

Harrison, P.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Hinkov, B.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

Hoffman, A. J.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Höfling, S.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Howard, S. S.

S. S. Howard, Z. Liu, and C. F. Gmachl, “Thermal and Stark effect roll-over of quantum-cascade lasers,” IEEE J. Quantum Electron. 44(4), 319–323 (2008).
[Crossref]

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Hoyler, N.

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Hughes, L. C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Hugi, A.

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

Hutchinson, A. L.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Ikonic, Z.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Indjin, D.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Jovanovic, V. D.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Kan, H.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Katz, S.

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

Khurgin, J. B.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Kirch, J.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

Kirch, J. D.

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

Kischkat, J.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Kumar, S.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

Kurlov, S.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

Lamari, S.

A. Hamadou, J.-L. Thobel, and S. Lamari, “Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers,” Opt. Commun. 281(21), 5385–5388 (2008).
[Crossref]

Laurent, S.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Leblanc, H. P.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Li, H.

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

Lindberg, D.

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

Lindskog, M.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Liu, P. Q.

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Liu, Z.

S. S. Howard, Z. Liu, and C. F. Gmachl, “Thermal and Stark effect roll-over of quantum-cascade lasers,” IEEE J. Quantum Electron. 44(4), 319–323 (2008).
[Crossref]

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Liverini, V.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Lyakh, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203–17211 (2011).
[Crossref] [PubMed]

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Maisons, G.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Manquest, C.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Marcadet, X.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Masselink, W. T.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

Maulini, R.

Mawst, L. J.

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

Meyer, J. R.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

Monastyrskyi, G.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

Ostendorf, R.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Patel, C. K.

Patel, C. K. N.

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203–17211 (2011).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Pflugl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Pflügl, C.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Reithmaier, J. P.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Scamarcio, G.

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Semtsiv, M. P.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

Shin, J.

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

Shin, J. C.

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

Sirtori, C.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Sivco, D. L.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Smowton, P. M.

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

Suttinger, M.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Tanbun-Ek, T.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Teissier, R.

Terazzi, R.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12(3), 033045 (2010).
[Crossref]

Teulon, F.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Thobel, J.-L.

A. Hamadou, J.-L. Thobel, and S. Lamari, “Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers,” Opt. Commun. 281(21), 5385–5388 (2008).
[Crossref]

Todi, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Tredicucci, A.

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Trinite, V.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Tsekoun, A.

Vasanelli, A.

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

Vizbaras, A.

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

Vukmirovic, N.

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

Vurgaftman, I.

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

Wacker, A.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Wang, Q. J.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Wang, X.

C. Pflügl, L. Diehl, A. Lyakh, Q. J. Wang, R. Maulini, A. Tsekoun, C. K. Patel, X. Wang, and F. Capasso, “Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers,” Opt. Express 18(2), 746–753 (2010).
[Crossref] [PubMed]

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Wasserman, D.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

Wittmann, A.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

Wolf, J. M.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

Xie, F.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Yamanishi, M.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Zah, C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Appl. Phys. Lett. (14)

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[Crossref]

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105(10), 103106 (2014).
[Crossref]

E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett. 94(8), 081110 (2009).
[Crossref]

J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers,” Appl. Phys. Lett. 106(15), 151106 (2015).
[Crossref]

J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[Crossref]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008).
[Crossref]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “High performance interminiband quantum cascade lasers with graded superlattices,” Appl. Phys. Lett. 73(15), 2101–2103 (1998).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. T. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

M. P. Semtsiv, Y. Flores, M. Chashnikova, G. Monastyrskyi, and W. T. Masselink, “Low-threshold intersubband laser based on interface scattering-rate engineering,” Appl. Phys. Lett. 100(16), 163502 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Wittmann, A. Hugi, F. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008).
[Crossref]

S. S. Howard, Z. Liu, and C. F. Gmachl, “Thermal and Stark effect roll-over of quantum-cascade lasers,” IEEE J. Quantum Electron. 44(4), 319–323 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. Botez, J. C. Shin, J. D. Kirch, C.-C. Chang, L. J. Mawst, and T. Earles, “Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200312 (2013).
[Crossref]

P. M. Smowton and P. Blood, “The differential efficiency of quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 491–498 (1997).
[Crossref]

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. Zah, “Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K,” IEEE Photonics Technol. Lett. 21(12), 814–817 (2009).

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F.-S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral Regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006).
[Crossref]

H. Li, S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “High efficiency injectorless quantum cascade lasers emitting at 8.8 μm with 2-W peak pulsed power per facet at room temperature,” IEEE Photonics Technol. Lett. 22(24), 1811–1814 (2010).
[Crossref]

J. Appl. Phys. (3)

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high performance short-wavelength quantum cascade lasers,” J. Appl. Phys. 113(13), 134506 (2013).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs – In GaAs / InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

V. D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, J. P. Reithmaier, and A. Forchel, “Influence of doping density on electron dynamics in GaAs / AlGaAs quantum cascade lasers,” J. Appl. Phys. 99(10), 103106 (2006).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

New J. Phys. (2)

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys. 12(3), 033045 (2010).
[Crossref]

Opt. Commun. (1)

A. Hamadou, J.-L. Thobel, and S. Lamari, “Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers,” Opt. Commun. 281(21), 5385–5388 (2008).
[Crossref]

Opt. Eng. (1)

D. Botez, J. Shin, S. Kumar, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Electron leakage and its suppression via deep-well structures in 4.5–5.0 μm-emitting quantum cascade lasers,” Opt. Eng. 49(11), 111108 (2010).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

D. Botez, J. C. Shin, S. Kumar, J. Kirch, C.-C. Chang, L. J. Mawst, I. Vurgaftman, J. R. Meyer, A. Bismuto, B. Hinkov, and J. Faist, “The temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Proc. SPIE 7953, 79530N (2011).
[Crossref]

Science (1)

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer wavelength) superlattice lasers,” Science 276(5313), 773–776 (1997).
[Crossref] [PubMed]

Other (3)

C.-C. Chang and D. Botez, as per the calculations in Ref. 7 of the device presented in Ref. 23.

Y. T. Chiu, Y. Dikmelik, Q. Zhang, J. B. Khurgin, and C. F. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest Series (Optical Society of America, 2012), paper CTh3N.1.
[Crossref]

Y. V. Flores, “Mid-infrared quantum cascade lasers: theoretical and experimental studies on temperature driven scattering,” PhD Thesis (Humboldt-Universitat zu Berlin, June 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Conduction-band energy diagram and relevant wavefunctions. Inset: representation of resonant-tunneling extraction from the active-region states 3 and 2. States 2’ and 3′ are extractor states.
Fig. 2
Fig. 2 Schematic representation of the depopulation of the lower laser levels, states 3 and 3′.
Fig. 3
Fig. 3 (a) Light output vs. current density curve, and spectrum (near threshold); (b) Jth and the slope efficiency vs. heatsink temperature. T0 and T1 are the characteristic temperatures for Jth and the slope efficiency, respectively.
Fig. 4
Fig. 4 Inverse slope efficiency vs. inverse mirror loss for STA-RE QCLs emitting at: (a) 8.4 μm; (b) 8.8 μm.
Fig. 5
Fig. 5 Fundamental limits for the wall-plug efficiency of mid-IR QCLs as a function of emission wavelength. The solid curve is for Δinj = 150 meV and a 70 ps dephasing time [9] and taking the internal differential efficiency ηid value to be 67% [9,32]. The red curve is for the same parameter values as in [9], while taking the ηid value to be 90%. The experimental data points are taken from [20,23,31,34–39].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η d = η i d α m α m + α w N p
η t r , t o t = η i n j ( 1 τ 2 / τ 32 ) ( 1 η i n j ) τ 2 / τ 3 1 + τ 2 / τ 3 τ 2 / τ 32
η i d η i n j η p η t r
η w p , max = η i d α m , o p t α m , o p t + α w ( 1 J t h J w p m ) N p h ν q V w p m
η w p , max η i n j η p η t r α m , o p t α m , o p t + α w ( 1 1 + Δ i n j / ( h ν ) ) ( 1 J t h J max )

Metrics