Abstract

In a light field camera, a microlens array (MLA) assembly error can affect the quality of the image. In this study, aiming to ensure corrective imaging using a light field camera, we accurately evaluate and eliminate the assembly error. We used an error image and a standard image to confirm the MLA assembly error, and we developed an assembly error correction model combined with an image quality evaluation index to correct the error. The proposed error correction model can be employed for various assembly errors and different error ranges. Quantitative analyses are performed for these different scenarios. The proposed model can be applied in accurate imaging using a light field camera, four-dimensional optical radiation field information reconstitution, MLA manufacturing and assembly processes, etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-focused microlens array optimization and light field imaging study based on Monte Carlo method

Tian-Jiao Li, Sai Li, Yuan Yuan, Yu-Dong Liu, Chuan-Long Xu, Yong Shuai, and He-Ping Tan
Opt. Express 25(7) 8274-8287 (2017)

High precision integrated projection imaging optical design based on microlens array

Yue Liu, Dewen Cheng, Tong Yang, and Yongtian Wang
Opt. Express 27(9) 12264-12281 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  2. T. Georgiev and C. Intwala, “Light field camera design for integral view photography,” Adobe System, Inc., Technical Report (2006), pp. 1.
  3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–42.
  4. K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, “Light field distortion feature for transparent object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2786–2793.
    [Crossref]
  5. G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, “Refractive shape from light field distortion,” in IEEE Conference on Computer Vision (2011), pp. 1180–1186.
  6. F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
    [Crossref] [PubMed]
  7. S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
    [Crossref] [PubMed]
  8. C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” in IEEE Transactions on Image Processing (2011), pp. 3322–3340.
  9. C. Cui and K. N. Ngan, “Plane-based external camera calibration with accuracy measured by relative deflection angle,” Signal Process. Image Commun. 25(3), 224–234 (2010).
    [Crossref]
  10. C. S. Fraser, “Digital camera self-calibration,” Opt. Commun. 52, 149–159 (1997).
  11. C. S. Xydeas and V. Petrovic, “Objective image fusion performance measure,” Electron. Lett. 36(4), 308–309 (2000).
    [Crossref]
  12. J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
    [Crossref] [PubMed]
  13. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Conference Record of the Thirty-Seventh Asilomar Conference (IEEE, 2003), pp.1398−1402.
    [Crossref]
  14. G. Piella and H. Heijmans, “A new quality metric for image fusion,” in IEEE International Conference on Acoustics (2003), pp.73−176.
    [Crossref]
  15. H. Chen and P. K. Varshney, “A human perception inspired quality metric for image fusion based on regional information,” Inf. Fusion 8(2), 193–207 (2007).
    [Crossref]
  16. Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
    [Crossref]
  17. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  18. R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
    [Crossref]
  19. B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
    [Crossref]
  20. Y. Yan, Z. Yu, and H. H. Hu, “Registration error analysis for microlens array and photosensor in light field camera,” Guangzi Xuebao 39(1), 123–126 (2010).
    [Crossref]
  21. L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Num. Heat Transfer. Part A 42(3), 253–268 (2002).
  22. A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
    [Crossref]
  23. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
    [Crossref] [PubMed]
  24. Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
    [Crossref]
  25. E. Witkowska, M. Gajda, and K. Rzazewski, “Monte Carlo method, classical fields and Bose statistics,” Opt. Commun. 283(5), 671–675 (2010).
    [Crossref]
  26. M. Premuda, E. Palazzi, F. Ravegnani, D. Bortoli, S. Masieri, and G. Giovanelli, “MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere,” Opt. Express 20(7), 7973–7993 (2012).
    [Crossref] [PubMed]
  27. T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
    [Crossref]
  28. X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
    [Crossref]
  29. H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
    [Crossref]
  30. Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
    [Crossref]
  31. H. Qi, Y. T. Ren, Q. Chen, and L. M. Ruan, “Fast method of retrieving the asymmetry factor and scattering albedo from the maximum time-resolved reflectance of participating media,” Appl. Opt. 54(16), 5234–5242 (2015).
    [Crossref] [PubMed]
  32. X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007).
    [Crossref] [PubMed]
  33. Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
    [Crossref]
  34. T. Nakamura, R. Horisaki, and J. Tanida, “Computational phase modulation in light field imaging,” Opt. Express 21(24), 29523–29543 (2013).
    [Crossref] [PubMed]
  35. L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).
  36. C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
    [Crossref]
  37. C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
    [Crossref]

2016 (1)

2015 (6)

H. Qi, Y. T. Ren, Q. Chen, and L. M. Ruan, “Fast method of retrieving the asymmetry factor and scattering albedo from the maximum time-resolved reflectance of participating media,” Appl. Opt. 54(16), 5234–5242 (2015).
[Crossref] [PubMed]

R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
[Crossref]

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

2014 (2)

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
[Crossref]

2013 (4)

L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

T. Nakamura, R. Horisaki, and J. Tanida, “Computational phase modulation in light field imaging,” Opt. Express 21(24), 29523–29543 (2013).
[Crossref] [PubMed]

Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
[Crossref]

2012 (1)

2010 (4)

E. Witkowska, M. Gajda, and K. Rzazewski, “Monte Carlo method, classical fields and Bose statistics,” Opt. Commun. 283(5), 671–675 (2010).
[Crossref]

Y. Yan, Z. Yu, and H. H. Hu, “Registration error analysis for microlens array and photosensor in light field camera,” Guangzi Xuebao 39(1), 123–126 (2010).
[Crossref]

C. Cui and K. N. Ngan, “Plane-based external camera calibration with accuracy measured by relative deflection angle,” Signal Process. Image Commun. 25(3), 224–234 (2010).
[Crossref]

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

2009 (1)

2008 (1)

A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
[Crossref]

2007 (2)

H. Chen and P. K. Varshney, “A human perception inspired quality metric for image fusion based on regional information,” Inf. Fusion 8(2), 193–207 (2007).
[Crossref]

X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007).
[Crossref] [PubMed]

2006 (2)

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
[Crossref]

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

2003 (1)

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

2002 (1)

L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Num. Heat Transfer. Part A 42(3), 253–268 (2002).

2000 (1)

C. S. Xydeas and V. Petrovic, “Objective image fusion performance measure,” Electron. Lett. 36(4), 308–309 (2000).
[Crossref]

1997 (1)

C. S. Fraser, “Digital camera self-calibration,” Opt. Commun. 52, 149–159 (1997).

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Apelt, F.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Ban, Y.

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Bortoli, D.

Bovik, A. C.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Conference Record of the Thirty-Seventh Asilomar Conference (IEEE, 2003), pp.1398−1402.
[Crossref]

Breuer, D.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Cai, Y. Z.

Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
[Crossref]

Calba, C.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
[Crossref]

Cao, Y.

Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
[Crossref]

Chen, H.

H. Chen and P. K. Varshney, “A human perception inspired quality metric for image fusion based on regional information,” Inf. Fusion 8(2), 193–207 (2007).
[Crossref]

Chen, H.-T.

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

Chen, J.-H.

L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).

Chen, Q.

H. Qi, Y. T. Ren, Q. Chen, and L. M. Ruan, “Fast method of retrieving the asymmetry factor and scattering albedo from the maximum time-resolved reflectance of participating media,” Appl. Opt. 54(16), 5234–5242 (2015).
[Crossref] [PubMed]

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

Cui, C.

C. Cui and K. N. Ngan, “Plane-based external camera calibration with accuracy measured by relative deflection angle,” Signal Process. Image Commun. 25(3), 224–234 (2010).
[Crossref]

Delfour, A.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

Fraser, C. S.

C. S. Fraser, “Digital camera self-calibration,” Opt. Commun. 52, 149–159 (1997).

Gajda, M.

E. Witkowska, M. Gajda, and K. Rzazewski, “Monte Carlo method, classical fields and Bose statistics,” Opt. Commun. 283(5), 671–675 (2010).
[Crossref]

Georgiev, T.

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Giovanelli, G.

Girasole, T.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
[Crossref]

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

Gong, S.

H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
[Crossref]

Gong, Z.

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

Gréhan, G.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

Guo, X.

Han, Y.

Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
[Crossref]

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–42.

Haworth, D. C.

A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
[Crossref]

He, Z. Z.

H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
[Crossref]

Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
[Crossref]

Heidrich, W.

G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, “Refractive shape from light field distortion,” in IEEE Conference on Computer Vision (2011), pp. 1180–1186.

Heijmans, H.

G. Piella and H. Heijmans, “A new quality metric for image fusion,” in IEEE International Conference on Acoustics (2003), pp.73−176.
[Crossref]

Hespel, L.

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

Horisaki, R.

Hossain, M. M.

Hu, H. H.

Y. Yan, Z. Yu, and H. H. Hu, “Registration error analysis for microlens array and photosensor in light field camera,” Guangzi Xuebao 39(1), 123–126 (2010).
[Crossref]

Ji, X.

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

Jiang, X.

Kim, S.

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Kragler, F.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Lai, T.

L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).

Lee, S.

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Levoy, M.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–42.

Li, D.

Li, S.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Li, W.

Li, Y. M.

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

Liu, B.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Liu, D. J.

R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Liu, P.

R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Lou, L.

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Ma, H.

Maeno, K.

K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, “Light field distortion feature for transparent object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2786–2793.
[Crossref]

Masieri, S.

Méès, L.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
[Crossref]

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

Modest, M. F.

A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
[Crossref]

Nagahara, H.

K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, “Light field distortion feature for transparent object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2786–2793.
[Crossref]

Nakamura, T.

Ngan, K. N.

C. Cui and K. N. Ngan, “Plane-based external camera calibration with accuracy measured by relative deflection angle,” Signal Process. Image Commun. 25(3), 224–234 (2010).
[Crossref]

Nikoloski, Z.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Palazzi, E.

Petrovic, V.

C. S. Xydeas and V. Petrovic, “Objective image fusion performance measure,” Electron. Lett. 36(4), 308–309 (2000).
[Crossref]

Piella, G.

G. Piella and H. Heijmans, “A new quality metric for image fusion,” in IEEE International Conference on Acoustics (2003), pp.73−176.
[Crossref]

Premuda, M.

Qi, H.

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

H. Qi, Y. T. Ren, Q. Chen, and L. M. Ruan, “Fast method of retrieving the asymmetry factor and scattering albedo from the maximum time-resolved reflectance of participating media,” Appl. Opt. 54(16), 5234–5242 (2015).
[Crossref] [PubMed]

H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
[Crossref]

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
[Crossref]

Qiao, Y. B.

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

Raskar, R.

G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, “Refractive shape from light field distortion,” in IEEE Conference on Computer Vision (2011), pp. 1180–1186.

Ravegnani, F.

Ren, Y. T.

Roodnick, D.

G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, “Refractive shape from light field distortion,” in IEEE Conference on Computer Vision (2011), pp. 1180–1186.

Rozé, C.

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
[Crossref]

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

Ruan, L. M.

H. Qi, Y. T. Ren, Q. Chen, and L. M. Ruan, “Fast method of retrieving the asymmetry factor and scattering albedo from the maximum time-resolved reflectance of participating media,” Appl. Opt. 54(16), 5234–5242 (2015).
[Crossref] [PubMed]

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
[Crossref]

Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
[Crossref]

L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Num. Heat Transfer. Part A 42(3), 253–268 (2002).

Rzazewski, K.

E. Witkowska, M. Gajda, and K. Rzazewski, “Monte Carlo method, classical fields and Bose statistics,” Opt. Commun. 283(5), 671–675 (2010).
[Crossref]

Shimada, A.

K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, “Light field distortion feature for transparent object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2786–2793.
[Crossref]

Shuai, Y.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Simoncelli, E. P.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Conference Record of the Thirty-Seventh Asilomar Conference (IEEE, 2003), pp.1398−1402.
[Crossref]

Stitt, M.

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Su, G. B.

R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Sun, J.

Tan, H.

Tan, H. P.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Num. Heat Transfer. Part A 42(3), 253–268 (2002).

Tanida, J.

Taniguchi, R.

K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, “Light field distortion feature for transparent object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2786–2793.
[Crossref]

Varshney, P. K.

H. Chen and P. K. Varshney, “A human perception inspired quality metric for image fusion based on regional information,” Inf. Fusion 8(2), 193–207 (2007).
[Crossref]

Vitkin, A.

Wang, A. Q.

A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
[Crossref]

Wang, J. Y.

A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
[Crossref]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wang, S.

Wang, Y. Q.

Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
[Crossref]

Wang, Z.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Conference Record of the Thirty-Seventh Asilomar Conference (IEEE, 2003), pp.1398−1402.
[Crossref]

Wang, Z. X.

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

Wetzstein, G.

G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, “Refractive shape from light field distortion,” in IEEE Conference on Computer Vision (2011), pp. 1180–1186.

Witkowska, E.

E. Witkowska, M. Gajda, and K. Rzazewski, “Monte Carlo method, classical fields and Bose statistics,” Opt. Commun. 283(5), 671–675 (2010).
[Crossref]

Wood, M. F. G.

Xu, C.

Xu, S.-H.

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

Xu, X. M.

Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
[Crossref]

Xydeas, C. S.

C. S. Xydeas and V. Petrovic, “Objective image fusion performance measure,” Electron. Lett. 36(4), 308–309 (2000).
[Crossref]

Yan, Y.

Y. Yan, Z. Yu, and H. H. Hu, “Registration error analysis for microlens array and photosensor in light field camera,” Guangzi Xuebao 39(1), 123–126 (2010).
[Crossref]

Yan, Y. Y.

L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Num. Heat Transfer. Part A 42(3), 253–268 (2002).

Yin, J. P.

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

Yin, Y. L.

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

Yu, L. L.

L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).

Yu, Z.

Y. Yan, Z. Yu, and H. H. Hu, “Registration error analysis for microlens array and photosensor in light field camera,” Guangzi Xuebao 39(1), 123–126 (2010).
[Crossref]

Yuan, Y.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Yun, T.

Zeng, N.

Zhang, B.

Zhang, R. M.

R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Zhao, Y. J.

L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).

Zhou, Q.

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

C. S. Xydeas and V. Petrovic, “Objective image fusion performance measure,” Electron. Lett. 36(4), 308–309 (2000).
[Crossref]

Guangzi Xuebao (1)

Y. Yan, Z. Yu, and H. H. Hu, “Registration error analysis for microlens array and photosensor in light field camera,” Guangzi Xuebao 39(1), 123–126 (2010).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Inf. Fusion (2)

H. Chen and P. K. Varshney, “A human perception inspired quality metric for image fusion based on regional information,” Inf. Fusion 8(2), 193–207 (2007).
[Crossref]

Y. Han, Y. Z. Cai, Y. Cao, and X. M. Xu, “A new image fusion performance metric based on visual information fidelity,” Inf. Fusion 14(2), 127–135 (2013).
[Crossref]

J. Electron. Imaging (1)

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Q. Wang, M. F. Modest, D. C. Haworth, and J. Y. Wang, “Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 269–279 (2008).
[Crossref]

J. Signal Process. (1)

L. L. Yu, T. Lai, Y. J. Zhao, and J.-H. Chen, “Study on the Phenomenon of SRA Image Edges Aliasing,” J. Signal Process. 29(1), 127–134 (2013).

Num. Heat Transfer. Part A (1)

L. M. Ruan, H. P. Tan, and Y. Y. Yan, “A Monte Carlo method applied to the medium with nongray absorbing-emitting-anisotropic scattering particles and gray approximation,” Num. Heat Transfer. Part A 42(3), 253–268 (2002).

Opt. Commun. (10)

X. Ji, Y. L. Yin, Q. Zhou, Z. X. Wang, and J. P. Yin, “Decelerating a pulsed subsonic molecular beam by a quasi-cw optical lattice: 3D Monte-Carlo simulations,” Opt. Commun. 287, 128–136 (2013).
[Crossref]

Z. Gong, H.-T. Chen, S.-H. Xu, Y. M. Li, and L. Lou, “Monte-Carlo simulation of optical trap stiffness measurement,” Opt. Commun. 263(2), 229–234 (2006).
[Crossref]

E. Witkowska, M. Gajda, and K. Rzazewski, “Monte Carlo method, classical fields and Bose statistics,” Opt. Commun. 283(5), 671–675 (2010).
[Crossref]

C. Rozé, T. Girasole, L. Méès, G. Gréhan, L. Hespel, and A. Delfour, “Interaction between ultra-short pulses and a dense scattering medium by Monte Carlo simulation: consideration of particle size effect,” Opt. Commun. 220(4–6), 237–245 (2003).
[Crossref]

C. Calba, C. Rozé, T. Girasole, and L. Méès, “Monte Carlo simulation of the interaction between an ultra-short pulse and a strongly scattering medium: The case of large particles,” Opt. Commun. 265(2), 373–382 (2006).
[Crossref]

Y. B. Qiao, H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan, “Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation,” Opt. Commun. 351, 75–84 (2015).
[Crossref]

Z. Z. He, H. Qi, Y. Q. Wang, and L. M. Ruan, “Inverse estimation of spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique,” Opt. Commun. 328, 8–22 (2014).
[Crossref]

R. M. Zhang, P. Liu, D. J. Liu, and G. B. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

C. S. Fraser, “Digital camera self-calibration,” Opt. Commun. 52, 149–159 (1997).

Opt. Express (5)

Plant J. (1)

F. Apelt, D. Breuer, Z. Nikoloski, M. Stitt, and F. Kragler, “Phytotyping(4D) : a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth,” Plant J. 82(4), 693–706 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. Kim, Y. Ban, and S. Lee, “Face liveness detection using a light field camera,” Sensors (Basel) 14(12), 22471–22499 (2014).
[Crossref] [PubMed]

Signal Process. Image Commun. (1)

C. Cui and K. N. Ngan, “Plane-based external camera calibration with accuracy measured by relative deflection angle,” Signal Process. Image Commun. 25(3), 224–234 (2010).
[Crossref]

Therm. Sci. (1)

H. Qi, Z. Z. He, S. Gong, and L. M. Ruan, “Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm,” Therm. Sci. 19(6), 2151–2160 (2015).
[Crossref]

Other (8)

C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” in IEEE Transactions on Image Processing (2011), pp. 3322–3340.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).

T. Georgiev and C. Intwala, “Light field camera design for integral view photography,” Adobe System, Inc., Technical Report (2006), pp. 1.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996), pp. 31–42.

K. Maeno, H. Nagahara, A. Shimada, and R. Taniguchi, “Light field distortion feature for transparent object recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2786–2793.
[Crossref]

G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar, “Refractive shape from light field distortion,” in IEEE Conference on Computer Vision (2011), pp. 1180–1186.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Conference Record of the Thirty-Seventh Asilomar Conference (IEEE, 2003), pp.1398−1402.
[Crossref]

G. Piella and H. Heijmans, “A new quality metric for image fusion,” in IEEE International Conference on Acoustics (2003), pp.73−176.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Structure of the reflective light field camera.
Fig. 2
Fig. 2 Target plane.
Fig. 3
Fig. 3 Coupling distance error structure
Fig. 4
Fig. 4 Image comparison considering different coupling distance errors.
Fig. 5
Fig. 5 Schematic of translation error.
Fig. 6
Fig. 6 Image comparison considering different translation errors.
Fig. 7
Fig. 7 Graph of translation error image considering the objective evaluation index based on edge information calculation result.
Fig. 8
Fig. 8 Graph of translation error image considering similarity evaluation index calculation result.
Fig. 9
Fig. 9 MLA translation error schematic diagram.
Fig. 10
Fig. 10 Subaperture image with translation error in x direction.
Fig. 11
Fig. 11 Subaperture image with translation error in y direction.
Fig. 12
Fig. 12 Subaperture image with translation error in z direction.
Fig. 13
Fig. 13 Subaperture image after translation error decomposition.
Fig. 14
Fig. 14 Partial enlarged rotation error image.
Fig. 15
Fig. 15 Tilt error image.
Fig. 16
Fig. 16 Verification flow chart for error image quality function.
Fig. 17
Fig. 17 Translation error verification for subaperture image.

Tables (4)

Tables Icon

Table 1 Calculation result of coupling distance error image quality evaluation

Tables Icon

Table 2 Tilt error image quality evaluation calculation result

Tables Icon

Table 3 Coupling distance error image quality calculation result

Tables Icon

Table 4 Tilt error image quality calculation result

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

f ( x ) = 1.52 + 0.4538 cos π x 0.01083 sin π x + 0.0271 cos 2 π x 0.06249 sin 2 π x
α S ( i , j ) = tan 1 ( s S y ( i , j ) 2 s S x ( i , j ) 2 )
g E ( i , j ) = s E x ( i , j ) 2 + s E y ( i , j ) 2
α E ( i , j ) = tan 1 ( s E y ( i , j ) 2 s E x ( i , j ) 2 )
G SE ( i,j ) = { g S ( i,j ) g E ( i,j ) g S ( i,j ) <g E ( i,j ) g E ( i,j ) g S ( i,j ) g S ( i,j ) g E ( i,j )
A S E ( i , j ) = | | α E ( i , j ) α S ( i , j ) | π 2 | π 2
Q g S E ( i , j ) = Γ g 1 + e κ g ( G S E ( i , j ) σ g )
Q α S E ( i , j ) = Γ α 1 + e κ α ( G S E ( i , j ) σ α )
Q S E ( i , j ) = Q g S E ( i , j ) × Q α S E ( i , j )
Q S E = i = 1 M j = 1 N Q S E ( i , j ) ω S ( i , j ) i = 1 M j = 1 N ω S ( i , j )
S S I M ( S , E ) = [ l ( S , E ) ] α [ c ( S , E ) ] β [ s ( S , E ) ] γ
l ( S , E ) = 2 μ S μ E + C 1 μ S 2 + μ E 2 + C 2
c ( S , E ) = 2 σ S σ E + C 2 σ S 2 + σ E 2 + C 2
s ( S , E ) = 2 σ S E + C 3 σ S σ E + C 3
Q Δ d ( E Δ d ) = 0.1635 E Δ d 2 0.2099 E Δ d + 0.083 E Δ d 3 1.1 E Δ d 2 + 0.3365 E Δ d + 0.1072
S S I M Δ d ( E Δ d ) = 0.9116 E Δ d 2 1.976 E Δ d + 2.155
Q θ ( E θ ) = 0.5 e 0.7 E θ + 0.2 e 0.055 E θ
S S I M θ ( E θ ) = 0.1872 e 0.7771 E θ + 1.909 e 0.03347 E θ

Metrics