Abstract

We presented a graphene-wrapped Cu particle hybrid system (G@Cu) to be used as a high performance surface-enhanced Raman scattering (SERS) substrate. The Cu particles wrapped by a few-layer graphene shell were directly synthesized on SiO2/Si by chemical vapor deposition assisted with thermal annealing in a mixture of methane and hydrogen. The detailed explanation on the different morphology of Cu particles induced by different thermal annealing condition was carried out with both qualitative and quantitative analysis and a series of G@Cu 3D models of Cu particles with different shape anisotropy and inter-particle gap were also built for further study of Raman enhancement mechanism. The G@Cu showed fine SERS activities, including the fluorescence quenching effect, the stability of Raman signals, chemical and optical stability, with an enhancement factor (EF) of ~1.5 × 106.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing

Jie Zhang, Xiaolei Zhang, Chunhong Lai, Haijun Zhou, and Yong Zhu
Opt. Express 22(18) 21157-21166 (2014)

ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates

Jie Zhang, Xiaolei Zhang, Yimin Ding, and Yong Zhu
Appl. Opt. 55(32) 9105-9112 (2016)

Highly reproducible and stable surface-enhanced Raman scattering substrates of graphene-Ag nanohole arrays fabricated by sub-diffraction plasmonic lithography

Tiancheng Gong, Yunfei Luo, Chengwei Zhao, Weisheng Yue, Jie Zhang, Yong Zhu, Mingbo Pu, Zuojun Zhang, Changtao Wang, and Xiangang Luo
OSA Continuum 2(3) 582-594 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfac. 84(1), 1–20 (1977).
    [Crossref]
  3. Y. Liu, Y. Hu, and J. Zhang, “Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 118(17), 8993–8998 (2014).
    [Crossref]
  4. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier, 2008).
  5. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  6. J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
    [Crossref] [PubMed]
  7. T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
    [Crossref]
  8. M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
    [Crossref] [PubMed]
  9. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  10. H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
    [Crossref]
  11. X. Ling and J. Zhang, “First-Layer Effect in Graphene-Enhanced Raman Scattering,” Small 6(18), 2020–2025 (2010).
    [Crossref] [PubMed]
  12. X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
    [Crossref] [PubMed]
  13. W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
    [Crossref] [PubMed]
  14. W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
    [Crossref] [PubMed]
  15. G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
    [Crossref]
  16. S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
    [Crossref] [PubMed]
  17. K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
    [Crossref]
  18. A. Mcleod, K. C. Vernon, A. E. Rider, and K. Ostrikov, “Optical Coupling of Gold Nanoparticles on Vertical Graphenes to Maximize SERS Response,” Opt. Lett. 39(8), 2334–2337 (2014).
    [Crossref] [PubMed]
  19. K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
    [Crossref]
  20. C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
    [Crossref] [PubMed]
  21. L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
    [Crossref] [PubMed]
  22. H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
    [Crossref]
  23. C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
    [Crossref] [PubMed]
  24. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
    [Crossref] [PubMed]
  25. R. Vengrenovich, B. Ivanskii, and A. Moskalyuk, “Generalized Lifshits-Slezov-Wagner distribution,” J. Exp. Theor. Phys. 104(6), 906–912 (2007).
    [Crossref]
  26. R. Vengrenovich, B. Ivanskyi, and A. Moskalyuk, “Generalized Chakraverty-Wagner distribution,” Ukr. J. Phys. 53(11), 1101–1109 (2008).
  27. R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
    [Crossref]
  28. R. Vengrenovitch, “On the Ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
    [Crossref]
  29. C. Wagner, “Theorie der Alterung von Niederschlagen durch Umlösen (Ostwald-Reifung), Zeitschrift für Elektrochemie,” Ber. Bunsenges. Phys. Chem 65(7–8), 581–591 (1961).
  30. B. Chakraverty, “Grain size distribution in thin films—1. Conservative systems,” J. Phys. Chem. Solids 28(12), 2401–2412 (1967).
    [Crossref]
  31. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  32. S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
    [Crossref] [PubMed]
  33. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1–2), 47–57 (2007).
    [Crossref]
  34. S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
    [Crossref]
  35. S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
    [Crossref]
  36. F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
    [Crossref] [PubMed]
  37. C. E. Cheng, C. Y. Lin, H. Y. Chang, C. H. Huang, H. Y. Lin, C. H. Chen, C. C. Hsu, C. S. Chang, and F. S. Sen Chien, “Surface-enhanced Raman scattering of graphene with photo-assistedsynthesized gold nanoparticles,” Opt. Express 21(5), 6547e6554 (2013).
  38. Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
    [Crossref]
  39. L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
    [Crossref]
  40. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
    [Crossref] [PubMed]
  41. K. S. Novoselov, “Graphene: the magic of flat carbon,” ECS Trans. 19(5), 3–7 (2009).
  42. X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
    [Crossref]
  43. Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).
  44. S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
    [Crossref] [PubMed]

2016 (1)

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

2015 (4)

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

2014 (7)

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

Y. Liu, Y. Hu, and J. Zhang, “Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 118(17), 8993–8998 (2014).
[Crossref]

A. Mcleod, K. C. Vernon, A. E. Rider, and K. Ostrikov, “Optical Coupling of Gold Nanoparticles on Vertical Graphenes to Maximize SERS Response,” Opt. Lett. 39(8), 2334–2337 (2014).
[Crossref] [PubMed]

2013 (5)

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

2012 (5)

X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
[Crossref] [PubMed]

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

2011 (2)

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

2010 (3)

X. Ling and J. Zhang, “First-Layer Effect in Graphene-Enhanced Raman Scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

2009 (2)

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

K. S. Novoselov, “Graphene: the magic of flat carbon,” ECS Trans. 19(5), 3–7 (2009).

2008 (2)

R. Vengrenovich, B. Ivanskyi, and A. Moskalyuk, “Generalized Chakraverty-Wagner distribution,” Ukr. J. Phys. 53(11), 1101–1109 (2008).

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

2007 (4)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1–2), 47–57 (2007).
[Crossref]

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

R. Vengrenovich, B. Ivanskii, and A. Moskalyuk, “Generalized Lifshits-Slezov-Wagner distribution,” J. Exp. Theor. Phys. 104(6), 906–912 (2007).
[Crossref]

2006 (2)

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

1982 (1)

R. Vengrenovitch, “On the Ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
[Crossref]

1977 (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfac. 84(1), 1–20 (1977).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

1967 (1)

B. Chakraverty, “Grain size distribution in thin films—1. Conservative systems,” J. Phys. Chem. Solids 28(12), 2401–2412 (1967).
[Crossref]

1961 (1)

C. Wagner, “Theorie der Alterung von Niederschlagen durch Umlösen (Ostwald-Reifung), Zeitschrift für Elektrochemie,” Ber. Bunsenges. Phys. Chem 65(7–8), 581–591 (1961).

Alameh, K.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

An, K.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Banholzer, M. J.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Barin, G. B.

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

Barreto, L. S.

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

Beg, F.

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Bossard, J. A.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Cai, W.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chakraverty, B.

B. Chakraverty, “Grain size distribution in thin films—1. Conservative systems,” J. Phys. Chem. Solids 28(12), 2401–2412 (1967).
[Crossref]

Chen, C.

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Chen, C. S.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Chen, M.

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Chen, S.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Chen, Y.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Chiang, I. K.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Chui, H. C.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

de Fátima Gimenez, I.

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

Ding, F.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dörr, K.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Du, D.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Duan, X.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fang, Y.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

Feng, D. J.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

Ferrari, A. C.

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1–2), 47–57 (2007).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Fesiv, I.

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Gao, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Gao, X. G.

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Gong, T.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Guan, Z. L.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Han, Y.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Hao, Q.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

He, K.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Herklotz, A.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Hu, G. D.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

Hu, L.

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Hu, Y.

Y. Liu, Y. Hu, and J. Zhang, “Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 118(17), 8993–8998 (2014).
[Crossref]

Huang, C. H.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Huang, C. W.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Huang, S.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Huang, T. J.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Hyeon, T.

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

Ivanskii, B.

R. Vengrenovich, B. Ivanskii, and A. Moskalyuk, “Generalized Lifshits-Slezov-Wagner distribution,” J. Exp. Theor. Phys. 104(6), 906–912 (2007).
[Crossref]

Ivanskyi, B.

R. Vengrenovich, B. Ivanskyi, and A. Moskalyuk, “Generalized Chakraverty-Wagner distribution,” Ukr. J. Phys. 53(11), 1101–1109 (2008).

Ivanskyy, B.

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

Jang, S. J.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Jang, Y.

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfac. 84(1), 1–20 (1977).
[Crossref]

Jensen, L.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Ji, H.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Jia, J. F.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jiang, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Jiang, S. Z.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Jin, L.

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

Joo, J.

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

Kang, J.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Kiraly, B.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Kong, J.

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

Kwon, S. G.

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

Lai, C.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, Y. T.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Li, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Li, J.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, X.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Li, X. J.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Li, Z.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Lin, H. Y.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Ling, X.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
[Crossref] [PubMed]

X. Ling and J. Zhang, “First-Layer Effect in Graphene-Enhanced Raman Scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

Liu, A. H.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

Liu, C. Y.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Liu, F.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Liu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Liu, M.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Liu, Y.

Y. Liu, Y. Hu, and J. Zhang, “Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 118(17), 8993–8998 (2014).
[Crossref]

Liu, Z.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

Long, K.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Lu, L. Q.

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

Luo, X.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Ma, L. Y.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Ma, S.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Ma, X. C.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Ma, Y.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Man, B.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Man, B. Y.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Mao, N.

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mcleod, A.

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Mei, Y.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Millstone, J. E.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Mirkin, C. A.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Moskalyuk, A.

R. Vengrenovich, B. Ivanskyi, and A. Moskalyuk, “Generalized Chakraverty-Wagner distribution,” Ukr. J. Phys. 53(11), 1101–1109 (2008).

R. Vengrenovich, B. Ivanskii, and A. Moskalyuk, “Generalized Lifshits-Slezov-Wagner distribution,” J. Exp. Theor. Phys. 104(6), 906–912 (2007).
[Crossref]

Nan, H.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Ng, A.

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Ni, Z.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Nishimura, R.

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, “Graphene: the magic of flat carbon,” ECS Trans. 19(5), 3–7 (2009).

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ostrikov, K.

Panko, I.

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

Park, J.

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

Piner, R. D.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Qin, L.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Qiu, C.

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Qiu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Qiu, T.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Qu, W. G.

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

Qua, Y.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Quan, J.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Rastelli, A.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Ren, W.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Ren, Y.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Rider, A. E.

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ruoff, R. S.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schmidt, O. G.

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

Shiue, R. J.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Song, Y.

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

Song, Y. M.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Souza Filho, A. G.

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

Stasyk, M.

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

Sue, H. J.

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

Suk, J. W.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Sumi, Y.

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

Sun, L.

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Sun, Z. C.

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Tan, C. L.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Tang, L.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfac. 84(1), 1–20 (1977).
[Crossref]

Vengrenovich, R.

R. Vengrenovich, B. Ivanskyi, and A. Moskalyuk, “Generalized Chakraverty-Wagner distribution,” Ukr. J. Phys. 53(11), 1101–1109 (2008).

R. Vengrenovich, B. Ivanskii, and A. Moskalyuk, “Generalized Lifshits-Slezov-Wagner distribution,” J. Exp. Theor. Phys. 104(6), 906–912 (2007).
[Crossref]

Vengrenovitch, R.

R. Vengrenovitch, “On the Ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
[Crossref]

Vengrenovych, R.

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

Vernon, K. C.

Wagner, C.

C. Wagner, “Theorie der Alterung von Niederschlagen durch Umlösen (Ostwald-Reifung), Zeitschrift für Elektrochemie,” Ber. Bunsenges. Phys. Chem 65(7–8), 581–591 (1961).

Wang, B.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Wang, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wang, N.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Wang, W. H.

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Wang, Y. Q.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wei, J.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Werner, D. H.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, J.

X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
[Crossref] [PubMed]

Wu, Y.

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Xiao, J.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

Xie, L.

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

Xu, A. W.

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

Xu, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Xu, S. C.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Xu, W.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
[Crossref] [PubMed]

Xue, Q. K.

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Yang, C.

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Yang, H.

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Yang, Q. Q.

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yao, H.

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

Yu, F.

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Yu, H. Q.

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

Yue, W.

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Zeng, Y.

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

Zhang, C.

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

Zhang, J.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

Y. Liu, Y. Hu, and J. Zhang, “Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 118(17), 8993–8998 (2014).
[Crossref]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
[Crossref] [PubMed]

X. Ling and J. Zhang, “First-Layer Effect in Graphene-Enhanced Raman Scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, X.

Zhao, W.

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

Zheng, Y.

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

Zheng, Z.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Zhou, H.

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

Zhou, X.

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, Y.

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

J. Zhang, X. Zhang, C. Lai, H. Zhou, and Y. Zhu, “Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing,” Opt. Express 22(18), 21157–21166 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Acta Metall. (1)

R. Vengrenovitch, “On the Ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
[Crossref]

Adv. Mater. (1)

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angew. Chem. Int. Ed. Engl. 46(25), 4630–4660 (2007).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

Y. Q. Wang, S. Ma, Q. Q. Yang, and X. J. Li, “Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array,” Appl. Surf. Sci. 258(15), 5881–5885 (2012).
[Crossref]

Ber. Bunsenges. Phys. Chem (1)

C. Wagner, “Theorie der Alterung von Niederschlagen durch Umlösen (Ostwald-Reifung), Zeitschrift für Elektrochemie,” Ber. Bunsenges. Phys. Chem 65(7–8), 581–591 (1961).

Carbon (3)

G. B. Barin, Y. Song, I. de Fátima Gimenez, A. G. Souza Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon 84(84), 82–90 (2015).
[Crossref]

T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, and N. Wang, “Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene,” Carbon 87, 385–394 (2015).
[Crossref]

X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qua, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66(2), 713–719 (2014).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Soc. Rev. (1)

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

CrystEngComm (1)

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition,” CrystEngComm 15(10), 1840–1844 (2013).
[Crossref]

ECS Trans. (1)

K. S. Novoselov, “Graphene: the magic of flat carbon,” ECS Trans. 19(5), 3–7 (2009).

J. Am. Chem. Soc. (1)

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. Long, X. Luo, H. Nan, D. Du, W. Zhao, Z. Ni, and T. Qiu, “Surface-enhanced Raman scattering from graphene covered gold nanocap arrays,” J. Appl. Phys. 114(18), 183520 (2013).
[Crossref]

J. Electroanal. Chem. Interfac. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfac. 84(1), 1–20 (1977).
[Crossref]

J. Exp. Theor. Phys. (1)

R. Vengrenovich, B. Ivanskii, and A. Moskalyuk, “Generalized Lifshits-Slezov-Wagner distribution,” J. Exp. Theor. Phys. 104(6), 906–912 (2007).
[Crossref]

J. Mater. Chem. (1)

L. Q. Lu, Y. Zheng, W. G. Qu, H. Q. Yu, and A. W. Xu, “Hydrophobic teflon films as concentrators for single-molecule SERS detection,” J. Mater. Chem. 22(39), 20986–20990 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

H. Yao, L. Jin, H. J. Sue, Y. Sumi, and R. Nishimura, “Facile decoration of Au nanoparticles on reduced graphene oxide surfaces via a one-step chemical functionalization approach,” J. Mater. Chem. A Mater. Energy Sustain. 1(1), 10783–10789 (2013).
[Crossref]

J. Phys. Chem. C (3)

Y. Liu, Y. Hu, and J. Zhang, “Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 118(17), 8993–8998 (2014).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

H. Zhou, C. Qiu, F. Yu, H. Yang, M. Chen, L. Hu, and L. Sun, “Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes,” J. Phys. Chem. C 115(23), 11348–11354 (2011).
[Crossref]

J. Phys. Chem. C Nanomater. Interfaces (1)

Q. Hao, B. Wang, J. A. Bossard, B. Kiraly, Y. Zeng, I. K. Chiang, L. Jensen, D. H. Werner, and T. J. Huang, “Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates,” J. Phys. Chem. C Nanomater. Interfaces 116(13), 7249–7254 (2012).

J. Phys. Chem. Solids (1)

B. Chakraverty, “Grain size distribution in thin films—1. Conservative systems,” J. Phys. Chem. Solids 28(12), 2401–2412 (1967).
[Crossref]

Laser Phys. Lett. (1)

S. C. Xu, B. Y. Man, S. Z. Jiang, A. H. Liu, G. D. Hu, C. S. Chen, M. Liu, C. Yang, D. J. Feng, and C. Zhang, “Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite,” Laser Phys. Lett. 11(9), 096001 (2014).
[Crossref]

Nano Lett. (2)

F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “Stretchable graphene: a close look at fundamental parameters through biaxial straining,” Nano Lett. 10(9), 3453–3458 (2010).
[Crossref] [PubMed]

S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang, and R. S. Ruoff, “Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils,” Nano Lett. 11(9), 3519–3525 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

C. W. Huang, H. Y. Lin, C. H. Huang, R. J. Shiue, W. H. Wang, C. Y. Liu, and H. C. Chui, “Layer-dependent morphologies of silver on n-layer graphene,” Nanoscale Res. Lett. 7(1), 618 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

L. Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, Q. K. Xue, Y. Han, S. Huang, and F. Liu, “Quantum size effect on adatom surface diffusion,” Phys. Rev. Lett. 97(26), 266102 (2006).
[Crossref] [PubMed]

Powder Metall. Met. Ceramics (1)

R. Vengrenovych, B. Ivanskyy, I. Panko, M. Stasyk, and I. Fesiv, “Stability of nanocrystals in 2D and 3D systems in Ostwald ripening,” Powder Metall. Met. Ceramics 54(5–6), 281–291 (2015).
[Crossref]

Rev. Mod. Phys. (1)

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Small (3)

X. Ling and J. Zhang, “First-Layer Effect in Graphene-Enhanced Raman Scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

X. Ling, J. Wu, W. Xu, and J. Zhang, “Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy,” Small 8(9), 1365–1372 (2012).
[Crossref] [PubMed]

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

Solid State Commun. (1)

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1–2), 47–57 (2007).
[Crossref]

Ukr. J. Phys. (1)

R. Vengrenovich, B. Ivanskyi, and A. Moskalyuk, “Generalized Chakraverty-Wagner distribution,” Ukr. J. Phys. 53(11), 1101–1109 (2008).

Other (2)

C. E. Cheng, C. Y. Lin, H. Y. Chang, C. H. Huang, H. Y. Lin, C. H. Chen, C. C. Hsu, C. S. Chang, and F. S. Sen Chien, “Surface-enhanced Raman scattering of graphene with photo-assistedsynthesized gold nanoparticles,” Opt. Express 21(5), 6547e6554 (2013).

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Preparation steps for the G@Cu composite as a SERS substrate, SEM images of (b) Cu film after magnetron sputtering, the height of Cu film is 192 nm, (c) G@Cu after CVD process, and (d) G@Cu after another annealing modification.
Fig. 2
Fig. 2 SEM images of G@Cu composite samples (a) #1, (b)#2, (c) #3, (d)#4, (e) #5, (f)#6, (g) #7, (h) #8, and (i) #9, and the corresponding amplified images are inserted.
Fig. 3
Fig. 3 Experimental histograms of major (red line) and minor axes (blue line) for Cu particles on the as-prepared G@Cu substrates versus theoretical Chakraverty-Wagner distribution (a-i represents sample #1-#9, respectively). The dotted curves are theoretical ones, corresponding to extreme growth mechanisms controlled by either surface diffusion, Ch distribution (x = 1), or chemical reaction, W distribution (x = 0). (A color version of this figure can be viewed online.)
Fig. 4
Fig. 4 (a) Raman spectra of the transferred graphene, (b) AFM image of the transferred graphene on bare SiO2/Si substrate, and (c) the height profile across the section analysis from point A to B in AFM image (b) (A color version of this figure can be viewed online).
Fig. 5
Fig. 5 Raman spectra of (a) nine as-prepared G@Cu samples and (b) R6G with concentration of 10−5 M when 9 as-prepared G@Cu samples as SERS substrates.
Fig. 6
Fig. 6 Raman spectra of R6G (10−5 M) when G@Cu composite as SERS substrate (black line) and Cu particles without graphene as SERS substrate (red line). (A color version of this figure can be viewed online)
Fig. 7
Fig. 7 (a) Oxygen content on Cu particles without graphene (red line) and G@Cu composite (black line) after stored in air for different days, the corresponding EDS of (b) Cu particles without graphene and (c) G@Cu composite stored in air for 70 days.
Fig. 8
Fig. 8 Schematic models of graphene and double Cu particles composite structures for shape anisotropy of (a) 0.5, (b) 0.88, (c) 0.375 and (d) 0.5 with another combination (different from (a)) in COMSOL simulation. The corresponding electric field distribution on the plane x-y (z = 0,the second column) for shape anisotropy of (e) 0.5, (f) 0.88, (g) 0.375 and (h) 0.5 with another combination respectively, while (i), (j), (k) and (l) the corresponding electric field distribution on the plane x-z (y = 0, the third column) respectively. (m) The corresponding intensity distributions of electric field along the white dotted arrow direction likely in (e), and (n) the enlarged view of figure (m). (o) The corresponding intensity distributions of electric field along the red dotted arrows direction likely in (i). (A color version of this figure can be viewed online)
Fig. 9
Fig. 9 Intensity distribution of electric field along (a) x axis in plane x-y (z = 0) and (c) z axis in plane y-z (x = 0) when the gap is 2 nm, 4 nm, 6 nm, 8 nm and 10 nm, respectively. The inset images are shown with the schematic model of graphene and double Cu particles with shape anisotropy (minor/major = 30:60) in plane x-y and y-z. (b) The enlarged view of figure (a) (red area). (A color version of this figure can be viewed online)

Tables (5)

Tables Icon

Table 1 Samples’ name and the corresponding preparation condition

Tables Icon

Table 2 Morphological parameters of each sample

Tables Icon

Table 3 The area ratios of Cu particles histogram on sample #1 to #9 under the theoretical curves

Tables Icon

Table 4 Intensity of D, G, 2D peak and ID/IG values of each sample

Tables Icon

Table 5 EF values of the representative bands of R6G on the as-prepared SERS structures

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Dexp( E n / KT )
E n2 > E n1
j= j s + j i
f( d, t, T )= 1 r g 4 Q g ( u )= 1 r g 4 g( u )
g( u )=Q g ( u )
g ( u )= u 3 ( u 3 +2u x 2 +2 x 2 +x ) D 2 ( 1u ) B exp( FD x 2 2 x 2 +x x 4 arctg u+ x 2 2 x 2 +x x 4 exp( C 1-u ) )
A=16 x 4 +8 x 3 +9 x 2 +2x+1,
Β= 32 x 4 +16 x 3 +48 x 2 +13x+5 Α ,
C= 12 x 2 +3x+3 Α ,
D= 80 x 4 +40 x 3 +15 x 2 +x+2 A ,
F= 32 x 6 +16 x 5 +54 x 4 +34 x 3 +8 x 2 A ,
x= j s j ,
( 1x )= j i j ,
j s j i = x 1x ,
Q= Φ 4 3 π α 1 ( θ ) 1 sin 3 θ 0 1 u 3 g ( u )du ,
d g 4 =4 A * x( 2x+1 ) t
EF= I SERS C 0 I 0 C SERS

Metrics