Abstract

We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial hardware in a standard SEM, which allows us to easily switch from pulsed to continuous operation of the SEM. Electron pulses of 80–90 ps duration are generated by conjugate blanking of a high-brightness electron beam, which allows probing emitters within a large range of decay rates. Moreover, we simultaneously attain a resolution better than λ/10, which ensures details at deep-subwavelength scales can be retrieved. As a proof-of-principle, we employ the pulsed electron beam to spatially measure excited-state lifetime modifications in a phosphor material across the edge of an aluminum half-plane, coated on top of the phosphor. The measured emission dynamics can be directly related to the structure of the sample by recording photon arrival histograms together with the secondary-electron signal. Our results show that time-resolved electron cathodoluminescence spectroscopy is a powerful tool of choice for nanophotonics, within reach of a large audience.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Superresolution imaging of the local density of states in plasmon lattices

Ke Guo, Marc A. Verschuuren, and A. Femius Koenderink
Optica 3(3) 289-298 (2016)

Polarization-sensitive cathodoluminescence Fourier microscopy

Toon Coenen and Albert Polman
Opt. Express 20(17) 18679-18691 (2012)

Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium

P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar
Opt. Express 18(6) 6360-6365 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Purcell, “Spontaneous emission probabilities at RF frequencies,” Phys. Rev. 69, 681 (1946).
  2. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010).
    [Crossref]
  3. K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).
  4. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [Crossref]
  5. R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
    [Crossref]
  6. W. Lukosz and R. E. Kunz, “Light-emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
    [Crossref]
  7. L. Novotny, “Allowed and forbidden light in near-field optics. I. a single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
    [Crossref]
  8. W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [Crossref]
  9. A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
    [Crossref]
  10. I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
    [Crossref]
  11. R. J. Moerland and J. P. Hoogenboom, “Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors,” Optica 3, 112–117 (2016).
    [Crossref]
  12. M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
    [PubMed]
  13. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
    [Crossref] [PubMed]
  14. K. Guo, M. A. Verschuuren, and A. F. Koenderink, “Superresolution imaging of the local density of states in plasmon lattices,” Optica 3, 289–298 (2016).
    [Crossref]
  15. R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
    [Crossref] [PubMed]
  16. J. K. Trautman and J. J. Macklin, “Time-resolved spectroscopy of single molecules using near-field and far-field optics,” Chem. Phys. 205, 221–229 (1996).
    [Crossref]
  17. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref] [PubMed]
  18. M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
    [Crossref] [PubMed]
  19. S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
    [Crossref] [PubMed]
  20. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
    [Crossref]
  21. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
    [Crossref]
  22. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
    [Crossref]
  23. K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19, 12365–12374 (2011).
    [Crossref] [PubMed]
  24. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
    [Crossref] [PubMed]
  25. A. Steckenborn, H. Münzel, and D. Bimberg, “Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations,” J. Lumin. 24–25, 351–354 (1981).
    [Crossref]
  26. M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques,” J. Appl. Phys. 70, R1–R52 (1991).
    [Crossref]
  27. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
    [Crossref] [PubMed]
  28. X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
    [Crossref] [PubMed]
  29. O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
    [Crossref] [PubMed]
  30. L. Tizei and M. Kociak, “Spatially resolved quantum nano-optics of single photons using an electron microscope,” Phys. Rev. Lett. 110, 153604 (2013).
    [Crossref] [PubMed]
  31. S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
    [Crossref]
  32. K. Ura, H. Fujioka, and T. Hosokawa, “Picosecond pulse stroboscopic scanning electron microscope,” Journal of Electron Microscopy 27, 247–252 (1978).
  33. D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
    [Crossref]
  34. A. Lassise, P. H. Mutsaers, and O. J. Luiten, “Compact, low power radio frequency cavity for femtosecond electron microscopy,” Rev. Sci. Instrum. 83, 043705 (2012).
    [Crossref] [PubMed]
  35. D. Poelman and P. F. Smet, “Time resolved microscopic cathodoluminescence spectroscopy for phosphor research,” Physica B 439, 35–40 (2014).
    [Crossref]
  36. A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
    [Crossref]
  37. A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
    [Crossref] [PubMed]
  38. A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
    [Crossref]
  39. Material data provided by manufacturer: CRYTUR, spol. s r.o http://www.crytur.cz .
  40. A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
    [Crossref]
  41. E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps,” J. Phys.: Condens. Matter 12, 1947–1958 (2000).
  42. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments : A How-To Approach (Springer-Verlag, 1987), 1st ed.
    [Crossref]
  43. M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
    [Crossref]
  44. P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program,” Scanning 19, 1–14 (1997).
    [Crossref]
  45. M. Toth and M. R. Phillips, “Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves,” Scanning 20, 425–432 (1998).
    [Crossref]
  46. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), 1st ed.
    [Crossref]

2016 (3)

2014 (3)

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

D. Poelman and P. F. Smet, “Time resolved microscopic cathodoluminescence spectroscopy for phosphor research,” Physica B 439, 35–40 (2014).
[Crossref]

A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
[Crossref]

2013 (3)

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

L. Tizei and M. Kociak, “Spatially resolved quantum nano-optics of single photons using an electron microscope,” Phys. Rev. Lett. 110, 153604 (2013).
[Crossref] [PubMed]

A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
[Crossref]

2012 (2)

A. Lassise, P. H. Mutsaers, and O. J. Luiten, “Compact, low power radio frequency cavity for femtosecond electron microscopy,” Rev. Sci. Instrum. 83, 043705 (2012).
[Crossref] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

2011 (3)

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref] [PubMed]

O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
[Crossref] [PubMed]

K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19, 12365–12374 (2011).
[Crossref] [PubMed]

2010 (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

2009 (2)

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

2005 (2)

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

2001 (3)

A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
[Crossref]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

2000 (1)

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps,” J. Phys.: Condens. Matter 12, 1947–1958 (2000).

1998 (2)

M. Toth and M. R. Phillips, “Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves,” Scanning 20, 425–432 (1998).
[Crossref]

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

1997 (2)

P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program,” Scanning 19, 1–14 (1997).
[Crossref]

L. Novotny, “Allowed and forbidden light in near-field optics. I. a single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
[Crossref]

1996 (1)

J. K. Trautman and J. J. Macklin, “Time-resolved spectroscopy of single molecules using near-field and far-field optics,” Chem. Phys. 205, 221–229 (1996).
[Crossref]

1995 (1)

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref] [PubMed]

1994 (1)

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

1991 (1)

M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques,” J. Appl. Phys. 70, R1–R52 (1991).
[Crossref]

1990 (1)

D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
[Crossref]

1987 (1)

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

1981 (1)

A. Steckenborn, H. Münzel, and D. Bimberg, “Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations,” J. Lumin. 24–25, 351–354 (1981).
[Crossref]

1980 (1)

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

1978 (1)

K. Ura, H. Fujioka, and T. Hosokawa, “Picosecond pulse stroboscopic scanning electron microscope,” Journal of Electron Microscopy 27, 247–252 (1978).

1977 (1)

1975 (1)

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
[Crossref]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

1966 (1)

K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).

1946 (1)

E. Purcell, “Spontaneous emission probabilities at RF frequencies,” Phys. Rev. 69, 681 (1946).

Alivisatos, A. P.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

Araya, K.

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

Arndt, M. F.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

Aspect, A.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010).
[Crossref]

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

Auzelle, T.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Baier, M. H.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

Barth, J. E.

A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
[Crossref]

Benameur, M.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Bian, R. X.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref] [PubMed]

Bimberg, D.

M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques,” J. Appl. Phys. 70, R1–R52 (1991).
[Crossref]

A. Steckenborn, H. Münzel, and D. Bimberg, “Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations,” J. Lumin. 24–25, 351–354 (1981).
[Crossref]

Brecher, C.

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps,” J. Phys.: Condens. Matter 12, 1947–1958 (2000).

Brillante, A.

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

Brunner, M.

D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
[Crossref]

Chance, R. R.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
[Crossref]

Chen, Y.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref] [PubMed]

Christen, J.

M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques,” J. Appl. Phys. 70, R1–R52 (1991).
[Crossref]

Coenen, T.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Colas des Francs, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Collin, S.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Crottini, A.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Daudin, B.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Dereux, A.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Deveaud, B.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).

Drouin, D.

P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program,” Scanning 19, 1–14 (1997).
[Crossref]

Dunn, R. C.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref] [PubMed]

Effting, A. P.

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

Efrima, S.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

Fabre, C.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010).
[Crossref]

Feng, J.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Fleck, M.

K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).

Frimmer, M.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref] [PubMed]

Fu, X.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Fujioka, H.

K. Ura, H. Fujioka, and T. Hosokawa, “Picosecond pulse stroboscopic scanning electron microscope,” Journal of Electron Microscopy 27, 247–252 (1978).

Ganiere, J. D.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Ganière, J.-D.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

Gauvin, R.

P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program,” Scanning 19, 1–14 (1997).
[Crossref]

Gayral, B.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Glodo, J.

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps,” J. Phys.: Condens. Matter 12, 1947–1958 (2000).

Grynberg, G.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010).
[Crossref]

Guo, K.

Guo, W.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Hagen, C. W.

A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Harris, C. B.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

Hartschuh, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), 1st ed.
[Crossref]

Heinis, D.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Herman, M. A.

M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques,” J. Appl. Phys. 70, R1–R52 (1991).
[Crossref]

Hettich, C.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

Hoogenboom, J. P.

R. J. Moerland and J. P. Hoogenboom, “Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors,” Optica 3, 112–117 (2016).
[Crossref]

A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
[Crossref]

A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
[Crossref]

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Hosokawa, T.

K. Ura, H. Fujioka, and T. Hosokawa, “Picosecond pulse stroboscopic scanning electron microscope,” Journal of Electron Microscopy 27, 247–252 (1978).

Hovington, P.

P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program,” Scanning 19, 1–14 (1997).
[Crossref]

Jacopin, G.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Kapon, E.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Klamra, W.

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

Kociak, M.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

L. Tizei and M. Kociak, “Spatially resolved quantum nano-optics of single photons using an electron microscope,” Phys. Rev. Lett. 110, 153604 (2013).
[Crossref] [PubMed]

Koenderink, A. F.

K. Guo, M. A. Verschuuren, and A. F. Koenderink, “Superresolution imaging of the local density of states in plasmon lattices,” Optica 3, 289–298 (2016).
[Crossref]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

Kruit, P.

A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
[Crossref]

A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
[Crossref]

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
[Crossref]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

Kunz, R. E.

Kuttge, M.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

Lassise, A.

A. Lassise, P. H. Mutsaers, and O. J. Luiten, “Compact, low power radio frequency cavity for femtosecond electron microscopy,” Rev. Sci. Instrum. 83, 043705 (2012).
[Crossref] [PubMed]

Legay, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Leo, W. R.

W. R. Leo, Techniques for Nuclear and Particle Physics Experiments : A How-To Approach (Springer-Verlag, 1987), 1st ed.
[Crossref]

Leung, P. T.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref] [PubMed]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

Liao, Z.-M.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Lischke, B.

D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
[Crossref]

Liu, R.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Liv, N.

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
[Crossref]

Ludziejewski, T.

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

Luiten, O. J.

A. Lassise, P. H. Mutsaers, and O. J. Luiten, “Compact, low power radio frequency cavity for femtosecond electron microscopy,” Rev. Sci. Instrum. 83, 043705 (2012).
[Crossref] [PubMed]

Lukosz, W.

Macklin, J. J.

J. K. Trautman and J. J. Macklin, “Time-resolved spectroscopy of single molecules using near-field and far-field optics,” Chem. Phys. 205, 221–229 (1996).
[Crossref]

Malko, A.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Meixner, A. J.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Merano, M.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Meuret, S.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Miller, A. H.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
[Crossref]

Möbius, D.

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

Moerland, R. J.

Mohammed, O. F.

O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
[Crossref] [PubMed]

Moszynski, M.

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

Münzel, H.

A. Steckenborn, H. Münzel, and D. Bimberg, “Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations,” J. Lumin. 24–25, 351–354 (1981).
[Crossref]

Mutsaers, P. H.

A. Lassise, P. H. Mutsaers, and O. J. Luiten, “Compact, low power radio frequency cavity for femtosecond electron microscopy,” Rev. Sci. Instrum. 83, 043705 (2012).
[Crossref] [PubMed]

Narváez, A. C.

A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
[Crossref]

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
[Crossref]

Norlin, L. O.

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

Novotny, L.

Pal, S. K.

O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
[Crossref] [PubMed]

Pelucchi, E.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Phillips, M. R.

M. Toth and M. R. Phillips, “Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves,” Scanning 20, 425–432 (1998).
[Crossref]

Pockrand, I.

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

Poelman, D.

D. Poelman and P. F. Smet, “Time resolved microscopic cathodoluminescence spectroscopy for phosphor research,” Physica B 439, 35–40 (2014).
[Crossref]

Poizat, J. P.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

Polman, A.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

Prock, A.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
[Crossref]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at RF frequencies,” Phys. Rev. 69, 681 (1946).

Renger, J.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Renucci, P.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Sanchez-Mosteiro, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

Sapienza, R.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Schäfer, F. P.

K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).

Schleifenbaum, F.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Schmitt, C.

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

Schmitt, R.

D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
[Crossref]

Shahmohammadi, M.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Silbey, R.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
[Crossref]

Smet, P. F.

D. Poelman and P. F. Smet, “Time resolved microscopic cathodoluminescence spectroscopy for phosphor research,” Physica B 439, 35–40 (2014).
[Crossref]

Sonderegger, S.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Songmuang, R.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Sperling, W.

K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).

Steckenborn, A.

A. Steckenborn, H. Münzel, and D. Bimberg, “Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations,” J. Lumin. 24–25, 351–354 (1981).
[Crossref]

Steiner, M.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Stupperich, C.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Takeuchi, K.

Tizei, L.

L. Tizei and M. Kociak, “Spatially resolved quantum nano-optics of single photons using an electron microscope,” Phys. Rev. Lett. 110, 153604 (2013).
[Crossref] [PubMed]

Tizei, L. H. G.

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Toth, M.

M. Toth and M. R. Phillips, “Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves,” Scanning 20, 425–432 (1998).
[Crossref]

Trautman, J. K.

J. K. Trautman and J. J. Macklin, “Time-resolved spectroscopy of single molecules using near-field and far-field optics,” Chem. Phys. 205, 221–229 (1996).
[Crossref]

Ura, K.

K. Ura, H. Fujioka, and T. Hosokawa, “Picosecond pulse stroboscopic scanning electron microscope,” Journal of Electron Microscopy 27, 247–252 (1978).

van Hulst, N. F.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Van Tol, R. F.

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

van Veen, A. H. V.

A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
[Crossref]

Verschuuren, M. A.

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

VirgilioFailla, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Waldeck, D. H.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

Weppelman, I. G.

Weppelman, I. G. C.

A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
[Crossref]

Winkler, D.

D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
[Crossref]

Wolski, D.

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

Xie, X. S.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref] [PubMed]

Yamamoto, N.

K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19, 12365–12374 (2011).
[Crossref] [PubMed]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

Yang, D. S.

O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
[Crossref] [PubMed]

Yu, D.

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

Zewail, A. H.

O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
[Crossref] [PubMed]

Zonnevylle, A. C.

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

A. C. Narváez, I. G. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, “Cathodoluminescence microscopy of nanostructures on glass substrates,” Opt. Express 21, 29968–29978 (2013).
[Crossref]

Zych, E.

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps,” J. Phys.: Condens. Matter 12, 1947–1958 (2000).

ACS Nano (1)

X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z.-M. Liao, B. Deveaud, and D. Yu, “Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412–3420 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

S. Meuret, L. H. G. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral, and M. Kociak, “Lifetime measurements well below the optical diffraction limit,” ACS Photonics 3, 1157–1163 (2016).
[Crossref]

Appl. Phys. Lett. (1)

A. C. Narváez, I. G. C. Weppelman, R. J. Moerland, J. P. Hoogenboom, and P. Kruit, “Confocal filtering in cathodoluminescence microscopy of nanostructures,” Appl. Phys. Lett. 104, 251121 (2014).
[Crossref]

Ber. Bunsenges. Phys. Chem. (1)

K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1176 (1966).

Chem Phys Chem (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. VirgilioFailla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” Chem Phys Chem 6, 2190–2196 (2005).
[PubMed]

Chem. Phys. (1)

J. K. Trautman and J. J. Macklin, “Time-resolved spectroscopy of single molecules using near-field and far-field optics,” Chem. Phys. 205, 221–229 (1996).
[Crossref]

Chem. Phys. Lett. (1)

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

IBM J. Res. Dev. (1)

D. Winkler, R. Schmitt, M. Brunner, and B. Lischke, “Flexible picosecond probing of integrated circuits with chopped electron beams,” IBM J. Res. Dev. 34, 189–203 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

O. F. Mohammed, D. S. Yang, S. K. Pal, and A. H. Zewail, “4D scanning ultrafast electron microscopy: visualization of materials surface dynamics,” J. Am. Chem. Soc. 133, 7708–7711 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques,” J. Appl. Phys. 70, R1–R52 (1991).
[Crossref]

J. Chem. Phys. (2)

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589 (1975).
[Crossref]

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540 (1987).
[Crossref]

J. Lumin. (2)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

A. Steckenborn, H. Münzel, and D. Bimberg, “Cathodoluminescence lifetime pattern of GaAs surfaces around dislocations,” J. Lumin. 24–25, 351–354 (1981).
[Crossref]

J. Microsc. (2)

A. C. Zonnevylle, R. F. Van Tol, N. Liv, A. C. Narváez, A. P. Effting, P. Kruit, and J. P. Hoogenboom, “Integration of a high-NA light microscope in a scanning electron microscope,” J. Microsc. 252, 58–70 (2013).
[Crossref] [PubMed]

S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref] [PubMed]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys.: Condens. Matter (1)

E. Zych, C. Brecher, and J. Glodo, “Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps,” J. Phys.: Condens. Matter 12, 1947–1958 (2000).

J. Vac. Sci. Technol. B (1)

A. H. V. van Veen, C. W. Hagen, J. E. Barth, and P. Kruit, “Reduced brightness of the ZrO/W Schottky electron emitter,” J. Vac. Sci. Technol. B 19, 2038–2044 (2001).
[Crossref]

Journal of Electron Microscopy (1)

K. Ura, H. Fujioka, and T. Hosokawa, “Picosecond pulse stroboscopic scanning electron microscope,” Journal of Electron Microscopy 27, 247–252 (1978).

Nano Lett. (1)

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater. 11, 781–787 (2012).
[Crossref] [PubMed]

Nature (1)

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganiere, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479–482 (2005).
[Crossref] [PubMed]

Nucl. Instrum. Meth. A (1)

M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, “Properties of the YAG : Ce scintillator,” Nucl. Instrum. Meth. A 345, 461–467 (1994).
[Crossref]

Opt. Express (2)

Optica (2)

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at RF frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (2)

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[Crossref]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79, 113405 (2009).
[Crossref]

Phys. Rev. Lett. (4)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref] [PubMed]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[Crossref] [PubMed]

L. Tizei and M. Kociak, “Spatially resolved quantum nano-optics of single photons using an electron microscope,” Phys. Rev. Lett. 110, 153604 (2013).
[Crossref] [PubMed]

Physica B (1)

D. Poelman and P. F. Smet, “Time resolved microscopic cathodoluminescence spectroscopy for phosphor research,” Physica B 439, 35–40 (2014).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

A. Lassise, P. H. Mutsaers, and O. J. Luiten, “Compact, low power radio frequency cavity for femtosecond electron microscopy,” Rev. Sci. Instrum. 83, 043705 (2012).
[Crossref] [PubMed]

Scanning (2)

P. Hovington, D. Drouin, and R. Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program,” Scanning 19, 1–14 (1997).
[Crossref]

M. Toth and M. R. Phillips, “Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves,” Scanning 20, 425–432 (1998).
[Crossref]

Other (4)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), 1st ed.
[Crossref]

Material data provided by manufacturer: CRYTUR, spol. s r.o http://www.crytur.cz .

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010).
[Crossref]

W. R. Leo, Techniques for Nuclear and Particle Physics Experiments : A How-To Approach (Springer-Verlag, 1987), 1st ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup to measure time-resolved cathodoluminescence. All elements within the yellow boundary are placed inside the vacuum of a Scanning Electron Microscope (SEM). At the top, a Schottky source provides the electrons that make up the electron beam. Condensor lens C1 is used to set the current in the electron beam. The combination of the condensor lens C2 and the deceleration lens is modified such, that it focuses the electron beam in between the blanker plates. Finally, the electron objective lens images this focus onto the sample. Since the two foci are conjugated, the beam remains stationary while blanking; see Fig. 2. Simultaneously, secondary electrons are detected by an Everhart-Thornley Detector (ETD).
Fig. 2
Fig. 2 Depiction of conjugate beam-blanking in order to create electron pulses. (a) At t = 0, the electron beam is angularly deflected and fully blanked by an aperture at the location of the electron lens. Reversing the voltage across the blanker plates scans the electron beam over the aperture. As long as the beam is not fully blanked, electrons will be focused onto the sample. Therefore, by swiftly inverting the voltage, an electron pulse is delivered to the sample in the focus. The pulse length was characterized with a custom-built streak camera (see Sec. A.1 in the appendix). (b) A fit with Gaussian profile yields a 90 ps pulse length full-width at half the maximum. The non-zero baseline is due to the dark current of the camera.
Fig. 3
Fig. 3 Scanning Electron Microscope resolution with the electron beam in continuous (blue curve) and pulsed (red curve) mode. A substrate containing tungsten and chromium strips is used as a test sample (see inset). After an image is obtained, the secondary-electron signal is integrated along the vertical axis (parallel to the strips), which results in the two curves shown. All features of the sample are faithfully reproduced in pulsed mode
Fig. 4
Fig. 4 Resolving excited-state dynamics with a pulsed electron beam. (a) A Ce3+:YAG sample is covered by half with aluminum and scanned through a pulsed electron beam. The electronic excitation results in emission of photons and the generation of secondary electrons. By recording both as a function of d, we can directly correlate the local structure of the sample with the decay dynamics. (b) A finite-difference time-domain simulation yields an estimate of the change in (orientationally averaged) lifetime as a function of distance d. The lifetime is normalized with the lifetime in solid Ce3+:YAG and weighted by the emission spectrum of cerium in a YAG host (see panel (c)). Negative values on the x-axis mean excitation on the uncoated Ce3+:YAG, and positive values mean excitation underneath the aluminum. To account for the (energy-dependent) electron penetration depth, we simulate the relative lifetime at several depths (20, 40 and 60 nm). (c) Measured emission spectrum of Ce3+:YAG (green curve). Excitation was with electrons of 4 keV energy. The black curve is a fit with three Gaussian distributions.
Fig. 5
Fig. 5 Measurement results of a YAG sample containing Ce3+, coated with aluminum on one side. (a) An example of the measured decay curve of Ce3+ in YAG. The red curve is a fit with the model exp(-γt) + C, which is a reasonably accurate representation of the data. The lifetime τ is then obtained from τ = 1. (b) Secondary-electron signal. The darker side depicts the sample side coated with aluminum. (c) Cerium emission intensity. (d) Cerium lifetime. Scale bar is 500 nm. (e) Cross section of an average of 10 scan lines of the secondary-electron signal (solid curve), and the data from a single line scan (dots), corresponding to the highlighted area and dotted line in (b), respectively. We refrain from averaging over all scan lines in order to limit the impact of the slight rotation that the sample has with respect to the y-axis. (f) Cross section of the lifetime of cerium emission, averaged over 10 line scans (solid curve) and the data from a single line scan (dots), corresponding to the highlighted area and dotted line in (d), respectively.
Fig. 6
Fig. 6 Arrival times of pulses with and without a set time delay of 0.5 ns. The duration of the delay is measured to be 508±6 ps.
Fig. 7
Fig. 7 (a) Line profile of the optical spot (see inset) along the yellow line. The Gaussian fit shows 8.60 pixel FWHM. (b) Intensity profile of the two spots (0.5 ns temporal seperation) recorded without line termination on the fast blanker with a double Gaussian fit. The spatial separation between the two pulses is found to be 119.3 pixels, and the average pulse width is 22.2 pixels FWHM.
Fig. 8
Fig. 8 Measured pulse rise time of the E-H Research Laboratories model 137 pulse generator. Here, the load is 1 MΩ‖17 pF at the end of approximately 3 meters of BNC cable (Z = 50 Ω). The pulse generator was set at 10 MHz with an 8× attenuation.
Fig. 9
Fig. 9 Calculated relative lifetime of an isotropic emitter inside a YAG host crystal (n = 1.83, λ = 542 nm), as a function of distance to an interface. The case of an interface with vacuum is depicted by the black solid curve, whereas the red solid curve depicts the situation where the YAG has an additional coating of 30 nm-thick aluminum (n = 0.94 + 6.32i).
Fig. 10
Fig. 10 (a–b) Monte-Carlo simulation (CASINO) of electron scattering in a YAG crystal. In (a), the volume that contains 50% of the energy lost due to elastic scattering is shown. The contour lines indicate 10%, 20% … 100% of the maximum energy loss. In (b), the fraction of electron energy loss as a function of depth is plotted. The penetration depth, weighted by the loss fraction, is 48 nm for YAG. (c–d) Monte-Carlo simulation (CASINO) of electron scattering in a YAG crystal, coated with 30 nm of aluminum. In (c), the volume that contains 50% of the energy lost due to elastic scattering is shown. The contour lines indicate 10%, 20% … 100% of the maximum energy loss. In (b), the fraction of electron energy loss as a function of depth is plotted. The penetration depth, weighted by the loss fraction, is 59 nm starting from the top of the aluminum layer. However, since the cerium emission stems from the YAG crystal only, the weighted penetration depth excluding the aluminum layer is 40 nm into the YAG host.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ = 1 τ = 2 π | 2 | H d | 1 | 2 ρ ( r , ω ) .
τ τ 0 = [ 0 1 / 3 ( ρ ^ x ( r , ω ) + ρ ^ y ( r , ω ) + ρ ^ z ( r , ω ) ) S ( ω ) d ω ] 1 ,

Metrics