Abstract

We demonstrate for the first time a CW all-polarization maintaining (PM) all-fiber optical parametric oscillator (FOPO) based on a birefringent photonic crystal fiber pumped by a tunable linearly polarized ytterbium-doped fiber laser. The all-PM FOPO features polarization-adjustment-free tunable operation in wavelength range from 920 to 1000 nm for both the slow and the fast fiber axes with output power reaching 1.3 W.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency CW all-fiber parametric oscillator tunable in 0.92-1 μm range

Ekaterina A. Zlobina, Sergey I. Kablukov, and Sergey A. Babin
Opt. Express 23(2) 833-838 (2015)

Tunable CW all-fiber optical parametric oscillator operating below 1 μm

Ekaterina A. Zlobina, Sergey I. Kablukov, and Sergey A. Babin
Opt. Express 21(6) 6777-6782 (2013)

Synchronously pumped photonic crystal fiber-based optical parametric oscillator

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor
Opt. Lett. 37(15) 3156-3158 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett. 37(15), 3156–3158 (2012).
    [Crossref] [PubMed]
  2. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion,” Opt. Express 21(13), 15826–15833 (2013).
    [Crossref] [PubMed]
  3. L. Zhang, S. Yang, P. Li, X. Wang, D. Gou, W. Chen, W. Luo, H. Chen, M. Chen, and S. Xie, “An all-fiber continuously time-dispersion-tuned picosecond optical parametric oscillator at 1 μm region,” Opt. Express 21(21), 25167–25173 (2013).
    [Crossref] [PubMed]
  4. L. Zhang, S. Yang, X. Wang, D. Gou, X. Li, H. Chen, M. Chen, and S. Xie, “Widely tunable all-fiber optical parametric oscillator based on a photonic crystal fiber pumped by a picosecond ytterbium-doped fiber laser,” Opt. Lett. 38(22), 4534–4537 (2013).
    [Crossref] [PubMed]
  5. T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
    [Crossref] [PubMed]
  6. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [Crossref] [PubMed]
  7. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
    [Crossref] [PubMed]
  8. T. Gottschall, T. Meyer, M. Baumgartl, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 22(18), 21921–21928 (2014).
    [Crossref] [PubMed]
  9. Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
    [Crossref] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  11. C. R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J. X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38(9), 1479–1481 (2013).
    [Crossref] [PubMed]
  12. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21(6), 6777–6782 (2013).
    [Crossref] [PubMed]
  13. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “High-efficiency CW all-fiber parametric oscillator tunable in 0.92-1 μm range,” Opt. Express 23(2), 833–838 (2015).
    [Crossref] [PubMed]
  14. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B 29(8), 1959–1967 (2012).
    [Crossref]
  15. E. A. Zlobina, V. Mishra, S. I. Kablukov, S. P. Singh, S. K. Varshney, and S. A. Babin, “Specifics of short-wavelength generation in a CW fiber OPO,” Laser Physics Letters, in print.

2015 (2)

2014 (1)

2013 (6)

2012 (2)

2011 (1)

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

2009 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Babin, S. A.

Baumgartl, M.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H.

Chen, M.

Chen, S.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Chen, W.

Cheng, J. X.

C. R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J. X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38(9), 1479–1481 (2013).
[Crossref] [PubMed]

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Dietzek, B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gottschall, T.

Gou, D.

Goulart, C.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hu, B.

Hu, C. R.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Jauregui, C.

Ji, M.

Kablukov, S. I.

Kelleher, E. J. R.

Kudlinski, A.

Lamb, E. S.

Lefrancois, S.

Li, P.

Li, X.

Limpert, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, J. D.

Luo, W.

Meyer, T.

Murray, R. T.

Mussot, A.

Nodop, D.

Popov, S. V.

Popp, J.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schimpf, D.

Schmitt, M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sharping, J. E.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Simpson, G.

Slipchenko, M. N.

C. R. Hu, M. N. Slipchenko, P. Wang, P. Wang, J. D. Lin, G. Simpson, B. Hu, and J. X. Cheng, “Stimulated Raman scattering imaging by continuous-wave laser excitation,” Opt. Lett. 38(9), 1479–1481 (2013).
[Crossref] [PubMed]

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taylor, J. R.

Tong, W.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Tünnermann, A.

Wadsworth, W. J.

Wang, P.

Wang, X.

Wei, H.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Wise, F. W.

Xie, S.

Xie, X. S.

Yang, S.

Zhai, Y. H.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Zhang, D.

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

Zhang, L.

Zlobina, E. A.

Appl. Phys. Lett. (1)

Y. H. Zhai, C. Goulart, J. E. Sharping, H. Wei, S. Chen, W. Tong, M. N. Slipchenko, D. Zhang, and J. X. Cheng, “Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator,” Appl. Phys. Lett. 98(19), 191106 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

E. A. Zlobina, V. Mishra, S. I. Kablukov, S. P. Singh, S. K. Varshney, and S. A. Babin, “Specifics of short-wavelength generation in a CW fiber OPO,” Laser Physics Letters, in print.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) All-PM FOPO scheme: PM FWDM – polarization maintaining filtered wavelength division multiplexer, WDM - wavelength division multiplexer, PM PCF – polarization maintaining photonic crystal fiber; (b) Round-trip cavity transmittance of the PM FOPO at the Stokes wavelength. The upper scale shows corresponding anti-Stokes wavelengths calculated from the phase matching conditions for the PCF slow axis at 10 W input pump power; (c) Estimated transmittance of pathway from the PCF output end to the port 2 for the anti-Stokes wave.
Fig. 2
Fig. 2 Output spectra of the all-PM FOPO at different pump wavelength: (a) Measured from port 1 in slow polarization mode; (b) Measured from port 2 in fast polarization mode. Numbers in parentheses correspond to the detuning of pump wavelength from the ZDW of corresponding PCF axis; (c) Individual output spectrum in slow polarization mode at pump wavelength of 1047.1 nm; (d) Scalar phase-matching diagrams: theory (solid lines), experiment with 18-m-long PCF in fast (triangles), slow (circles) polarization modes and with 5-m-long PCF in slow polarization mode (squares).
Fig. 3
Fig. 3 (a) Anti-Stokes power at port 2 for output wavelength of 922 nm (squares), 930 nm (circles), 941 nm (triangles), 952 nm (diamonds), and 961 nm (stars) versus incident pump power at phase matching along the fast axis of the PCF; (b) Slope efficiency for the fast fiber axis calculated at the FOPO output, port 2, (filled symbols) and estimated at the exit of the PCF (empty symbols) using the data for insertion losses in PM FWDM-2, WDM-3 and WDM-4. Circles show fraction of the anti-Stokes power at the port 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δβ= β 04 Ω 4 /12+( β 03 ( ω p ω 0 )+ β 04 ( ω p ω 0 ) 2 /2) Ω 2 +2γ P p ,

Metrics