Abstract

The architecture of imaging polarimeters with front-mounted polarizer generally used in infrared imaging polarimetry has significant influence on the imaging process of the systems and further calculation of the polarization information of the observed scenario. In this study, the imaging process of infrared polarization imaging system with front-mounted polarizer is analyzed, a radiation correction method based on the modified infrared imaging model of such a system is proposed, and both laboratory and outdoor experiments are performed to verify its effect. Experimental results show that the proposed correction method can effectively eliminate the adverse effects of the radiation introduced by front-mounted polarizer, which significantly reduces scene radiation measurement error and improves the calculation accuracy of the polarization information.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-uniformity correction of polarization response for liquid crystal modulated polarimeters

Yuxin Zhang, Bao Zhang, Yongfeng Hong, Wenda Wu, and Fang Xu
Appl. Opt. 58(32) 8829-8838 (2019)

Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering

Si He, Xia Wang, Runqiu Xia, Weiqi Jin, and Jian’an Liang
Appl. Opt. 57(7) B150-B159 (2018)

Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint

Huijie Zhao, Zheng Ji, Ying Zhang, Xiaofeng Sun, Pengfei Song, and Yansong Li
Opt. Express 24(15) 16396-16409 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Connor, I. Carrie, R. Craig, and J. Parsons, “Discriminative imaging using a LWIR polarimeter,” in SPIE Europe Security and Defence (International Society for Optics and Photonics2008), pp. 71130K–71130K–71111.
  2. X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).
  3. C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).
  4. J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).
  5. S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
    [Crossref]
  6. D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics2009), pp. 730010–730010–730019.
  7. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” in Optics & Photonics2005 (International Society for Optics and Photonics2005), pp. 58880V–58880V–58812.
  8. D. H. Goldstein, Polarized light (CRC Press, 2016).
  9. Y. Liao, Polarized Optics (Science Press, 2003).
  10. R. Shinatani, A. Y. Fan, and C. H. Kang, Polarized Light (Atomic Energy Press, 1994).
  11. L. Meng and J. P. Kerekes, “Adaptive target detection with a polarization-sensitive optical system,” Appl. Opt. 50(13), 1925–1932 (2011).
    [Crossref] [PubMed]
  12. J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).
  13. Z. Lu, “Calibration and the measurement error analysis of infrared imaging system for temperature measurement,” (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2010).
  14. T. Bai and W. Jin, Principle and Technology of Photoelectric Imaging (Beijing Institute of Technology Press, 2013).
  15. V. L. Gamiz, “Performance of a four-channel polarimeter with low-light-level detection,” in Optical Science, Engineering and Instrumentation '97 (International Society for Optics and Photonics1997), pp. 35–46.
  16. Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

2016 (1)

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

2014 (2)

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

2013 (1)

J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).

2011 (1)

2007 (1)

Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

2002 (1)

S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
[Crossref]

Bishop, K. P.

S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
[Crossref]

Caudill, T. R.

S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
[Crossref]

Ding, Y.

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Du, L

J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).

Duan, J.

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Fetrow, M. P.

S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
[Crossref]

Fu, Q.

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Hong, J.

Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

Jiang, H.

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Jin, W

J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).

Jin, W.

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

Kerekes, J. P.

Li, W.

Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

Liang, J.

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

Liu, J.

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

Lu, X.

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

Meng, L.

Mo, C.

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Qiao, Y.

Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

Sposato, S. H.

S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
[Crossref]

Wang, X

J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).

Wang, X.

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

Wang, Z.

Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

Wen, R.

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

Xia, J. L. R.

J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).

Xia, R.

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

Zhu, Y.

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Appl. Opt. (1)

Infrar. Laser Eng. (2)

X. Wang, R. Xia, W. Jin, J. Liu, and J. Liang, “Technology progress of infrared polarization imaging detection,” Infrar. Laser Eng. 43, 3175–3182 (2014).

Z. Wang, Y. Qiao, J. Hong, and W. Li, “Detecting camouflaged objects with thermal polarization imaging system,” Infrar. Laser Eng. 36, 853–856 (2007).

Infrar. Technol. (1)

C. Mo, J. Duan, Q. Fu, Y. Ding, Y. Zhu, and H. Jiang, “Review of Polarization Imaging Technology for International Military Application (II),” Infrar. Technol. 36, 265–270 (2014).

Opt. Eng. (1)

S. H. Sposato, M. P. Fetrow, K. P. Bishop, and T. R. Caudill, “Two long-wave infrared spectral polarimeters for use in understanding polarization phenomenology,” Opt. Eng. 41(5), 1055–1064 (2002).
[Crossref]

Opt. Technol. (1)

J. L. R. Xia, W Jin, X Wang, and L Du, “Review of imaging polarimetry based on Stokes Vector,” Opt. Technol. 39(1), 56–62 (2013).

Wuli Xuebao (1)

J. Liu, W. Jin, X. Wang, X. Lu, and R. Wen, “A new algorithm for polarization information restoration with considering the γ property of optoelectronic polarimeter,” Wuli Xuebao 65, 094201 (2016).

Other (9)

Z. Lu, “Calibration and the measurement error analysis of infrared imaging system for temperature measurement,” (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2010).

T. Bai and W. Jin, Principle and Technology of Photoelectric Imaging (Beijing Institute of Technology Press, 2013).

V. L. Gamiz, “Performance of a four-channel polarimeter with low-light-level detection,” in Optical Science, Engineering and Instrumentation '97 (International Society for Optics and Photonics1997), pp. 35–46.

D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics2009), pp. 730010–730010–730019.

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” in Optics & Photonics2005 (International Society for Optics and Photonics2005), pp. 58880V–58880V–58812.

D. H. Goldstein, Polarized light (CRC Press, 2016).

Y. Liao, Polarized Optics (Science Press, 2003).

R. Shinatani, A. Y. Fan, and C. H. Kang, Polarized Light (Atomic Energy Press, 1994).

B. Connor, I. Carrie, R. Craig, and J. Parsons, “Discriminative imaging using a LWIR polarimeter,” in SPIE Europe Security and Defence (International Society for Optics and Photonics2008), pp. 71130K–71130K–71111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Examples of infrared polarization imaging systems with front-mounted polarizer.
Fig. 2
Fig. 2 Schematic diagram of the infrared polarization imaging system with a front-mounted wire grid polarizer.
Fig. 3
Fig. 3 Modified schematic diagram of the infrared polarization imaging system with a front-mounted wire grid polarizer.
Fig. 4
Fig. 4 Structure of the LWIR polarization imaging system.
Fig. 5
Fig. 5 Experimental setup of the calibration of the mapping relationship between the image grayscale and irradiance.
Fig. 6
Fig. 6 Fitting curve of the image grayscale and “relative irradiance.” The red triangles represent the calibration samples.
Fig. 7
Fig. 7 Schematic diagram of the correction experiment of the polarized blackbody radiation source
Fig. 8
Fig. 8 Corrected results, uncorrected results and theoretical estimates of polarized blackbody radiation source’s DoLP at different temperature.
Fig. 9
Fig. 9 Outdoor scenario in the experiment. The image is obtained from the 8-bit result after multi-frame averaging, contrast enhancement, and linear compression based on the 14-bit original data.
Fig. 10
Fig. 10 Polarized images and intensity image. (a) 45° polarization channel, (b) 90° polarization channel, (c) 135° polarization channel, (d) intensity channel.
Fig. 11
Fig. 11 Comparison of the uncorrected I and directly captured I. (a) Uncorrected I, (b) directly captured I.
Fig. 12
Fig. 12 Comparison of the uncorrected and corrected results of Q. (a) Uncorrected Q, (b) corrected Q.
Fig. 13
Fig. 13 Comparison of the uncorrected and corrected results of U. (a) Uncorrected U, (b) corrected U.
Fig. 14
Fig. 14 Comparison of the uncorrected and corrected results of DoLP. (a) Uncorrected DoLP, (b) corrected DoLP.
Fig. 15
Fig. 15 Comparison of the uncorrected and corrected results of AoP. (a) Uncorrected AoP, (b) corrected AoP.
Fig. 16
Fig. 16 Histograms of the uncorrected and corrected results. (a) Histograms of uncorrected I and directly captured I, (b) histograms of uncorrected and corrected Q, (c) histograms of uncorrected and corrected U, (d) histograms of uncorrected and corrected DoLP, (e) histograms of uncorrected and corrected AoP.
Fig. 17
Fig. 17 Calculation result of I with Ip (p = 0, 1, 2) replaced by and directly captured intensity (INP). (a) Calculation result and (b) INP.

Tables (4)

Tables Icon

Table 1 Technical specifications of Edmund wire grid polarizer

Tables Icon

Table 2 Technical specifications of FLIR infrared camera

Tables Icon

Table 3 Uncorrected and corrected calculation results of I, Q, U, DoLP and AoP at different blackbody temperatures

Tables Icon

Table 4 Estimates of DoLPPBRS with different εP at different TBB

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

S= [ I Q U V ] T ,
DoLP= Q 2 + U 2 I , AoP= 1 2 arctan[ U Q ].
M=[ M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 ].
S o =M S i .
I= M 11 I i + M 12 Q i + M 13 U i + M 14 V i .
M p = 1 2 [ 1 cos2θ sin2θ 0 cos2θ cos 2 2θ cos2θsin2θ 0 sin2θ cos2θsin2θ sin 2 2θ 0 0 0 0 0 ]
I= 1 2 ( I i + Q i cos2θ+ U i sin2θ )
I= M c S in ,
M c = 1 2 [ 1 cos2 θ 0 sin2 θ 0 1 cos2 θ 1 sin2 θ 1 1 cos2 θ 2 sin2 θ 2 ]
S in = M c -1 I,
I NP = I i .
{ I α = 1 2 ( I i + Q i cos2α+ U i sin2α) I α+π/2 = 1 2 ( I i Q i cos2α U i sin2α)
I α + I α+π/2 = I i = I NP ,
M c = 1 2 [ τ 1 + τ 2 ( τ 1 τ 2 )cos2 θ 0 ( τ 1 τ 2 )sin2 θ 0 τ 1 + τ 2 ( τ 1 τ 2 )cos2 θ 1 ( τ 1 τ 2 )sin2 θ 1 τ 1 + τ 2 ( τ 1 τ 2 )cos2 θ 2 ( τ 1 τ 2 )sin2 θ 2 ].
I= 1 2 ρ[ I i ( τ 1 + τ 2 )+ Q i ( τ 1 τ 2 )cos2θ+ U i ( τ 1 τ 2 )sin2θ]+r,
I NP =ρ I i .
{ I α = 1 2 ρ[ I i ( τ 1 + τ 2 )+ Q i ( τ 1 τ 2 )cos2α+ U i ( τ 1 τ 2 )sin2α]+r I α+π/2 = 1 2 ρ[ I i ( τ 1 + τ 2 ) Q i ( τ 1 τ 2 )cos2α U i ( τ 1 τ 2 )sin2α]+r
I α + I α+π/2 = I NP ( τ 1 + τ 2 )+2r,
I= T s M c S in +R,
T s =[ ρ ρ ρ ]
M c = 1 2 [ τ 1 + τ 2 ( τ 1 τ 2 )cos2 θ 0 ( τ 1 τ 2 )sin2 θ 0 τ 1 + τ 2 ( τ 1 τ 2 )cos2 θ 1 ( τ 1 τ 2 )sin2 θ 1 τ 1 + τ 2 ( τ 1 τ 2 )cos2 θ 2 ( τ 1 τ 2 )sin2 θ 2 ]
I NP = T s ' S in ,
[ S in r ]= M t 1 [ I I NP ],
M t = 1 2 [ ρ( τ 1 + τ 2 ) ρ( τ 1 τ 2 )cos2 θ 0 ρ( τ 1 τ 2 )sin2 θ 0 2 ρ( τ 1 + τ 2 ) ρ( τ 1 τ 2 )cos2 θ 1 ρ( τ 1 τ 2 )sin2 θ 1 2 ρ( τ 1 + τ 2 ) ρ( τ 1 τ 2 )cos2 θ 2 ρ( τ 1 τ 2 )sin2 θ 2 2 2ρ 0 0 0 ].
G=a× I γ +b,
{ DoL P PBRS = M BB ( λ min ~ λ max , T BB ) 2 ·( τ max τ min ) M BB ( λ min ~ λ max , T BB ) 2 ·( τ max + τ min )+ M P ( λ min ~ λ max , T P ) M P ( λ min ~ λ max , T P )= ε P · M BB ( λ min ~ λ max , T P ) ,
I p ' =( I p r)/( τ 1 + τ 2 ).

Metrics