Abstract

We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution

Tao Zhu, Qian He, Xianghui Xiao, and Xiaoyi Bao
Opt. Express 21(3) 2953-2963 (2013)

Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber

Yunli Dang, Zhiyong Zhao, Ming Tang, Can Zhao, Lin Gan, Songnian Fu, Tongqing Liu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(17) 20183-20193 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30(24), 3284–3286 (2005).
    [Crossref] [PubMed]
  2. F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  3. M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).
    [Crossref]
  4. L. Thévenaz, “Review and progress on distributed fibre sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC1.
  5. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
    [Crossref] [PubMed]
  6. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  7. A. Masoudi, M. Belal, and T. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  8. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  9. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  10. F. Wang, W. Zhan, X. Zhang, and Y. Lu, “Improvement of spatial resolution for BOTDR by iterative subdivision method,” J. Lightwave Technol. 31(23), 3663–3667 (2013).
    [Crossref]
  11. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  12. Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
    [Crossref]
  13. S. Matsuura, M. Kumoda, Y. Anzai, and Y. Koyamada, “Distributed strain measurement in GI fiber with sub-meter spatial resolution by DP-BOTDR,” in 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, (Optical Society of America, 2013), paper MS2_2.
  14. M. A. Farahani and T. Gogolla, “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing,” J. Lightwave Technol. 17(8), 1379–1391 (1999).
    [Crossref]
  15. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
    [Crossref]
  16. M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, G. Bolognini, and F. Di Pasquale, “Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only,” J. Lightwave Technol. 30(8), 1215–1222 (2012).
    [Crossref]
  17. G. Bolognini and A. Hartog, “Raman-based fibre sensors: trends and applications,” Opt. Fiber Technol. 19(6), 678–688 (2013).
    [Crossref]
  18. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
    [Crossref] [PubMed]
  19. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
    [Crossref] [PubMed]
  20. M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
    [Crossref] [PubMed]
  21. Y. S. Muanenda, M. Taki, T. Nannipieri, A. Signorini, C. J. Oton, F. Zaidi, I. Toccafondo, and F. Di Pasquale, “Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements,” J. Lightwave Technol. 34(2), 342–350 (2016).
    [Crossref]
  22. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  23. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  24. A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
    [Crossref]
  25. A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
    [Crossref]
  26. D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
    [Crossref] [PubMed]
  27. J. Hu, L. Xia, L. Yang, W. Quan, and X. Zhang, “Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques,” Opt. Express 24(12), 13610–13620 (2016).
    [Crossref] [PubMed]
  28. Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “A distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser,” Proc. SPIE 9634, 96342C (2015).
    [Crossref]
  29. Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
    [Crossref] [PubMed]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic 2007).
  31. H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
    [Crossref] [PubMed]
  32. W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
    [Crossref]
  33. Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
    [Crossref]
  34. Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
    [Crossref]
  35. S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
    [Crossref]

2016 (7)

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

Y. S. Muanenda, M. Taki, T. Nannipieri, A. Signorini, C. J. Oton, F. Zaidi, I. Toccafondo, and F. Di Pasquale, “Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements,” J. Lightwave Technol. 34(2), 342–350 (2016).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

J. Hu, L. Xia, L. Yang, W. Quan, and X. Zhang, “Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques,” Opt. Express 24(12), 13610–13620 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (5)

W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
[Crossref]

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, G. Bolognini, and F. Di Pasquale, “Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only,” J. Lightwave Technol. 30(8), 1215–1222 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

2008 (1)

M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).
[Crossref]

2006 (1)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

2005 (2)

1999 (1)

Alahbabi, M. N.

Ba, D.

Bao, X.

Belal, M.

A. Masoudi, M. Belal, and T. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Bergman, A.

Bernini, R.

Bolognini, G.

G. Bolognini and A. Hartog, “Raman-based fibre sensors: trends and applications,” Opt. Fiber Technol. 19(6), 678–688 (2013).
[Crossref]

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, G. Bolognini, and F. Di Pasquale, “Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only,” J. Lightwave Technol. 30(8), 1215–1222 (2012).
[Crossref]

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Cai, H.

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Cao, Z.

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Chen, W.

W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
[Crossref]

Cho, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Cho, Y. T.

Corredera, P.

Danon, O.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Deng, M.

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Di Pasquale, F.

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

Y. S. Muanenda, M. Taki, T. Nannipieri, A. Signorini, C. J. Oton, F. Zaidi, I. Toccafondo, and F. Di Pasquale, “Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements,” J. Lightwave Technol. 34(2), 342–350 (2016).
[Crossref]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “A distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser,” Proc. SPIE 9634, 96342C (2015).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, G. Bolognini, and F. Di Pasquale, “Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only,” J. Lightwave Technol. 30(8), 1215–1222 (2012).
[Crossref]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Dong, Y.

Fan, Z.

Farahani, M. A.

Faralli, S.

Frazão, O.

Gan, J.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Garcia-Ruiz, A.

Gogolla, T.

Gonzalez-Herraez, M.

González-Herráez, M.

Hao, Y.

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Hartog, A.

G. Bolognini and A. Hartog, “Raman-based fibre sensors: trends and applications,” Opt. Fiber Technol. 19(6), 678–688 (2013).
[Crossref]

He, Q.

Hu, J.

Huang, S.

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Ip, E.

Jia, X. H.

Jones, M.

M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).
[Crossref]

Juarez, J. C.

Kim, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Langer, T.

Lee, D.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Li, H.

Li, J.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Li, Q.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Li, X.

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Liu, J.

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Liu, M.

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Lu, Y.

F. Wang, W. Zhan, X. Zhang, and Y. Lu, “Improvement of spatial resolution for BOTDR by iterative subdivision method,” J. Lightwave Technol. 31(23), 3663–3667 (2013).
[Crossref]

Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Lu, Z.

Luo, H.

W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
[Crossref]

Martin-Lopez, S.

Martins, H. F.

Masoudi, A.

A. Masoudi, M. Belal, and T. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Meng, Z.

W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
[Crossref]

Minardo, A.

Motil, A.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Muanenda, Y.

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection,” Opt. Lett. 41(3), 587–590 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “A distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser,” Proc. SPIE 9634, 96342C (2015).
[Crossref]

Muanenda, Y. S.

Nannipieri, T.

Newson, T.

A. Masoudi, M. Belal, and T. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Newson, T. P.

Oton, C. J.

Pan, Z.

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Park, J.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Park, N.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pastor-Graells, J.

Peled, Y.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Peng, F.

Peng, Z. P.

Qu, R.

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Quan, W.

Rao, Y. J.

Salgado, P.

Signorini, A.

Soto, M. A.

Taki, M.

Taylor, H. F.

Toccafondo, I.

Tur, M.

Wang, B.

Wang, F.

F. Wang, W. Zhan, X. Zhang, and Y. Lu, “Improvement of spatial resolution for BOTDR by iterative subdivision method,” J. Lightwave Technol. 31(23), 3663–3667 (2013).
[Crossref]

Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
[Crossref]

Wang, R.

Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
[Crossref]

Wang, T.

Wang, Z. N.

Weng, Y.

Wu, H.

Wu, Y.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Xia, L.

Xiao, X.

Yang, F.

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Yang, L.

Yang, Z.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Yao, Y.

Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
[Crossref]

Yaron, L.

Ye, Q.

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Yin, M.

Zaidi, F.

Zeni, L.

Zhan, W.

Zhang, Q.

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

Zhang, X.

Zhang, Z.

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

Zhou, D.

Zhou, H.

W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
[Crossref]

Zhu, T.

IEEE Photonics J. (1)

Y. Hao, Q. Ye, Z. Pan, F. Yang, H. Cai, R. Qu, Q. Zhang, and Z. Yang, “Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system,” IEEE Photonics J. 4(5), 1686–1692 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Y. Yao, Y. Lu, X. Zhang, F. Wang, and R. Wang, “Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen’s class signal processing method,” IEEE Photonics Technol. Lett. 24(15), 1337–1339 (2012).
[Crossref]

S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technol. Lett. 28(7), 759–762 (2016).
[Crossref]

Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential Brillouin spectrum technique,” IEEE Photonics Technol. Lett. 28(14), 1493–1496 (2016).
[Crossref]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

J. Lightwave Technol. (6)

Laser Phys. (1)

W. Chen, Z. Meng, H. Zhou, and H. Luo, “Spontaneous and induced modulation instability in the presence of broadband spectra caused by the amplified spontaneous emission,” Laser Phys. 22(8), 1305–1309 (2012).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Nat. Photonics (1)

M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2(3), 153–154 (2008).
[Crossref]

Opt. Express (8)

F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
[Crossref] [PubMed]

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24(9), 9781–9793 (2016).
[Crossref] [PubMed]

J. Hu, L. Xia, L. Yang, W. Quan, and X. Zhang, “Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques,” Opt. Express 24(12), 13610–13620 (2016).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

G. Bolognini and A. Hartog, “Raman-based fibre sensors: trends and applications,” Opt. Fiber Technol. 19(6), 678–688 (2013).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (1)

Y. Muanenda, C. J. Oton, S. Faralli, T. Nannipieri, A. Signorini, and F. Di Pasquale, “A distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser,” Proc. SPIE 9634, 96342C (2015).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic 2007).

L. Thévenaz, “Review and progress on distributed fibre sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC1.

S. Matsuura, M. Kumoda, Y. Anzai, and Y. Koyamada, “Distributed strain measurement in GI fiber with sub-meter spatial resolution by DP-BOTDR,” in 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, (Optical Society of America, 2013), paper MS2_2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Laser pulse modulation and data processing. (a) The modulated laser pulse sequences and signals captured by data acquisition card (DAQ); (b) φ-OTDR data processing at the vibration point; (c) B-OTDR data processing, data after Gaussian window short time Fourier transform (G-STFT), BG: Brillouin Gain.
Fig. 2
Fig. 2 Data processing for B-OTDR. (a) Beat signal of LO and backscattering light is divide into shorter segments of equal length; (b) The processing of Gaussian window short time Fourier transform (G-STFT); (c) Fitting result of weighted Lorentzian nonlinear fitting (WLF)
Fig. 3
Fig. 3 (a) Experimental setup. AOM: Acousto-Optic Modulator, EDFA: Erbium-Doped Fiber Amplifier, BPF: Band-Pass Filter, PZT: Piezoelectric Transducer, AWG: Arbitrary Waveform Generator, BL: Brillouin Laser, PS: Polarization Scrambler, OS: Optical Switch, PD: Photo Detector, DAQ: Data Acquisition card; (b) Scattering spectra of the sensing fiber at different EDFA pump power; (c) Amplified optical pulses for B-OTDR and φ-OTDR
Fig. 4
Fig. 4 φ-OTDR traces at the end section of the sensing fiber when the PZT is driven by 100Hz (a, c) and 1KHz (b, d) sinusoidal signal. (a, b) superposition of ten traces; (c, d) normalized consecutive traces within 50ms
Fig. 5
Fig. 5 (a)-(d) FFT transform spectra of the vibration point when 500Hz, 1KHz, 3kHz and 4.8kHz sinusoidal signals are applied to the PZT, respectively.
Fig. 6
Fig. 6 (a) Spatial distribution of Brillouin scattering beat frequency signal along the 10km sensing fiber; (b) BFS of end section of the sensing fiber when applied temperate shift, strain and vibration simultaneously. The color bars represent the measured Brillouin gain values.
Fig. 7
Fig. 7 (a) Brillouin frequency shift peaks of Fig. 6(b) extracted by Lorentzian nonlinear fitting; (b) Enlarged frequency shift peak around the 80cm strain section marked by the circle in Fig. 7(a).
Fig. 8
Fig. 8 (a) BFS peaks around water tank section under different temperature; (b) Relationship between the average Brillouin frequency and temperature
Fig. 9
Fig. 9 (a) BFS peaks around 5m strain section under different strains; (b) Relationship between the average Brillouin frequency and strain

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y(t)= a=1 N I 1 (aT-t) + I 2 ((N+1)T-t)
I i (t)= P i e t 2 / ( τ i 2 2ln2 ) 2
ν B = C ν B T ΔT+ C ν B ε Δε+ ν B0
P STFT (t,ω)= | t g /2 t g /2 e jωτ s(τ)g(τt)dτ | 2
g(t)= e t 2 / ( τ g 2 2ln2 ) 2

Metrics