Abstract

Plasmon-based fluorescence modulation has led to important advances in various fields and has paved the way toward promising scientific research aimed at enabling new applications. However, the modulation of fluorescence properties based on both localized surface plasmon (LSP) and cavity modes of propagating surface plasmon polaritons (SPPs) are rarely reported. Here, we raster scanned a hybrid nanowire (HNW) with quantum dots (QDs) adsorbed onto a Ag nanowire (NW) and obtained two-photon fluorescence (TPF) maps of the intensity and decay rate. The spatial distributions of the intensity and decay rate strongly depend on the Fabry-Pérot (FP) cavity modes of the SPPs, the LSP mode launched by the incident laser and the excitation energy of the QDs. A double exponential decay process was observed, which is attributed to different decay channels through the LSP and cavity modes. The experimental results are explained using numerical simulations. This work shows that many physical parameters, such as the polarization of the incident beam and the geometry of the Ag NW, can modulate the fluorescence properties of the QDs, which has potential applications in many important fields.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupling of spontaneous emission from GaN–AlN quantum dots into silver surface plasmons

Arup Neogi, Hadis Morkoç, Takamasa Kuroda, and Atsushi Tackeuchi
Opt. Lett. 30(1) 93-95 (2005)

Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation

Xin Li, Fu-Jen Kao, Chien-Chin Chuang, and Sailing He
Opt. Express 18(11) 11335-11346 (2010)

Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications

Jaetae Seo, Rafal Fudala, Wan-Joong Kim, Ryan Rich, Bagher Tabibi, Hyoyeong Cho, Zygmunt Gryczynski, Ignacy Gryczynski, and William Yu
Opt. Mater. Express 2(8) 1026-1039 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  2. J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
    [Crossref] [PubMed]
  3. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  4. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  5. I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
    [Crossref] [PubMed]
  6. D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
    [Crossref] [PubMed]
  7. K. A. Willets, “Super-resolution imaging of SERS hot spots,” Chem. Soc. Rev. 43(11), 3854–3864 (2014).
    [Crossref] [PubMed]
  8. J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
    [Crossref]
  9. I. Tanabe and T. Tatsuma, “Plasmonic manipulation of color and morphology of single silver nanospheres,” Nano Lett. 12(10), 5418–5421 (2012).
    [Crossref] [PubMed]
  10. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  11. N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
    [Crossref] [PubMed]
  12. S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
    [Crossref] [PubMed]
  13. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
    [Crossref] [PubMed]
  14. S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
    [Crossref]
  15. J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
    [Crossref]
  16. A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
    [Crossref] [PubMed]
  17. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  18. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  19. X. Li, F. J. Kao, C. C. Chuang, and S. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18(11), 11335–11346 (2010).
    [Crossref] [PubMed]
  20. A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
    [Crossref] [PubMed]
  21. A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
    [Crossref]
  22. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
    [Crossref] [PubMed]
  23. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  24. T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
    [Crossref] [PubMed]
  25. A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
    [Crossref] [PubMed]
  26. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
    [Crossref] [PubMed]
  27. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2009).
    [Crossref]
  28. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
    [Crossref] [PubMed]
  29. D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
    [Crossref] [PubMed]
  30. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [Crossref] [PubMed]
  31. L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
    [Crossref] [PubMed]
  32. Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
    [Crossref] [PubMed]
  33. Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
    [Crossref] [PubMed]
  34. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  35. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
    [Crossref] [PubMed]
  36. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
    [Crossref] [PubMed]
  37. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
    [Crossref] [PubMed]
  38. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
    [Crossref] [PubMed]
  39. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
    [Crossref] [PubMed]
  40. C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
    [Crossref] [PubMed]
  41. C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
    [Crossref] [PubMed]
  42. C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
    [Crossref] [PubMed]
  43. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
    [Crossref] [PubMed]
  44. K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
    [Crossref] [PubMed]
  45. N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
    [Crossref]
  46. B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
    [Crossref] [PubMed]
  47. S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
    [Crossref] [PubMed]
  48. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  49. I. T. Lima and V. R. Marinov, “Volumetric display based on twophoton absorption in quantum dot dispersions,” J. Disp. Technol. 6(6), 221–228 (2010).
    [Crossref]
  50. Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
    [Crossref]
  51. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
    [Crossref]
  52. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

2015 (5)

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

2014 (7)

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref] [PubMed]

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

K. A. Willets, “Super-resolution imaging of SERS hot spots,” Chem. Soc. Rev. 43(11), 3854–3864 (2014).
[Crossref] [PubMed]

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

2013 (7)

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

2012 (2)

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

I. Tanabe and T. Tatsuma, “Plasmonic manipulation of color and morphology of single silver nanospheres,” Nano Lett. 12(10), 5418–5421 (2012).
[Crossref] [PubMed]

2011 (6)

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

2010 (4)

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

X. Li, F. J. Kao, C. C. Chuang, and S. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18(11), 11335–11346 (2010).
[Crossref] [PubMed]

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

I. T. Lima and V. R. Marinov, “Volumetric display based on twophoton absorption in quantum dot dispersions,” J. Disp. Technol. 6(6), 221–228 (2010).
[Crossref]

2009 (4)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2009).
[Crossref]

2008 (3)

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

2006 (4)

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (1)

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

2002 (2)

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
[Crossref]

1999 (1)

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Albella, P.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Ameloot, M.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Arbouet, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Artemyev, M.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Aussenegg, F.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bae, W. K.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Barois, P.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Belacel, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Biagioni, P.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Bigourdan, F.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Bourillot, E.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Brongersma, M. L.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2009).
[Crossref]

Brüning, C.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Callegari, V.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Castro-López, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Chen, C.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Chen, H.

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Chen, Y.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Chuang, C. C.

Clercq, B. D.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Coolen, L.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Cooper, T. M.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

Coutant, C.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Cummins, Z.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Curto, A. G.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Dalton, M. J.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

De Luca, A.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Denkova, D.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

Dereux, A.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Dhama, R.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Di Martino, G.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Dorpe, P. V.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

Duan, J.

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Dubertret, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Dujardin, E.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Faulds, K.

D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
[Crossref] [PubMed]

Fedutik, Y.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Feichtner, T.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Feldmann, J.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Forchel, A.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Fourkas, J. T.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Fron, E.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Geisler, P.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Ginger, D. S.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Girard, C.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Gotschy, W.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Goudonnet, J.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Graham, D.

D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
[Crossref] [PubMed]

Greffet, J.-J.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Gruber, C.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Grzelczak, M. P.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Guo, H. L.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Gupta, A.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Habert, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Haley, J. E.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Hancu, I. M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

He, S.

Hecht, B.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Hofkens, J.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Hohenau, A.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Hohenester, U.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Huang, J. S.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Huang, L.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Hugonin, J.-P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Hutchison, J. A.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Infusino, M.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Javaux, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Jen-La Plante, I.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

Jun, Y. C.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2009).
[Crossref]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Kamp, M.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Kao, F. J.

Kenens, B.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Kern, J.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Khanal, B. P.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Khatua, S.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Klar, T. A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Klimov, V. I.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[Crossref] [PubMed]

Krenn, J.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Krenn, J. R.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Kulkarni, A. P.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Kürzinger, K.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Kuttge, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

La Deda, M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Lacroute, Y.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Lafosse, X.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Lagae, L.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Leitner, A.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Li, J. F.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Li, L.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Li, Q.

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref] [PubMed]

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Li, X.

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Li, Z. Y.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Lima, I. T.

I. T. Lima and V. R. Marinov, “Volumetric display based on twophoton absorption in quantum dot dispersions,” J. Disp. Technol. 6(6), 221–228 (2010).
[Crossref]

Lin, H. Q.

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

Lin, Q.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[Crossref] [PubMed]

Liu, S. Y.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Liu, Y.

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

Liz-Marzán, L. M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Lu, G.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Lu, Y.

Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Luo, H.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Maier, S. A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Maitre, A.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Marinov, V. R.

I. T. Lima and V. R. Marinov, “Volumetric display based on twophoton absorption in quantum dot dispersions,” J. Disp. Technol. 6(6), 221–228 (2010).
[Crossref]

Marquier, F.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Martin, O. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Meng, Z. M.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Michaelis de Vasconcellos, S.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Ming, T.

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Mizuno, H.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Moerner, W.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Moshchalkov, V. V.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Munechika, K.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Munro, A. M.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Murphy, C. J.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Nah, S.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Nepal, D.

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Nichtl, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Orrit, M.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pachter, R.

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Pala, R.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2009).
[Crossref]

Pandey, A.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Park, K.

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Pastoriza-Santos, I.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Paulo, P. M.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Pietryga, J. M.

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

Plante, I. J.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Prall, B. S.

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[Crossref] [PubMed]

Prangsma, J. C.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Rakovich, A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Rashed, A.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Ravaine, S.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Ringler, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Rocha, S.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Roeffaers, M. B.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Ropp, C.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Samanta, A.

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Schider, G.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Schwemer, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Schwob, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Senellart, P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Sennhauser, U.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Shapiro, B.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Sharma, J.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Shi, Z.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Shih, C. K.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Silhanek, A. V.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

Sivapalan, S. T.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

Smith, W. E.

D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
[Crossref] [PubMed]

Sonnefraud, Y.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Strangi, G.

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Striccoli, M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Su, L.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
[Crossref]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tan, L. S.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

Tanabe, I.

I. Tanabe and T. Tatsuma, “Plasmonic manipulation of color and morphology of single silver nanospheres,” Nano Lett. 12(10), 5418–5421 (2012).
[Crossref] [PubMed]

Tatsuma, T.

I. Tanabe and T. Tatsuma, “Plasmonic manipulation of color and morphology of single silver nanospheres,” Nano Lett. 12(10), 5418–5421 (2012).
[Crossref] [PubMed]

Temnov, V.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Teulle, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Thompson, D. G.

D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
[Crossref] [PubMed]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Tillack, A. F.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

Trügler, A.

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Uji-I, H.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

Urbas, A. M.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Ustinovich, E.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

Vaia, R. A.

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Van Dorpe, P.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

van Hulst, N. F.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Vandenbosch, G. A.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Vella, J. H.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Vercruysse, D.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Viarbitskaya, S.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Waks, E.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Wang, C.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Wang, J.

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weeber, J.

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Wei, H.

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Weinmann, P.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets, “Super-resolution imaging of SERS hot spots,” Chem. Soc. Rev. 43(11), 3854–3864 (2014).
[Crossref] [PubMed]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

Woo, K. C.

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

Wu, X.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Wunderlich, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

Xia, Y.

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
[Crossref]

Xu, H.

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

Xu, H. X.

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yan, H.

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

Yang, T. K.

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yin, Y.

Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
[Crossref]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, H.

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

Zhao, L.

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zheng, X.

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

Zhou, Y.

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Ziegler, J.

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Zijlstra, P.

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

Zou, S.

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

ACS Nano (5)

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano 8(5), 4440–4449 (2014).
[Crossref] [PubMed]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

D. Vercruysse, X. Zheng, Y. Sonnefraud, N. Verellen, G. Di Martino, L. Lagae, G. A. Vandenbosch, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Directional fluorescence emission by individual v-antennas explained by mode expansion,” ACS Nano 8(8), 8232–8241 (2014).
[Crossref] [PubMed]

B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, “Generalized synthesis of hybrid metal-semiconductor nanostructures tunable from the visible to the infrared,” ACS Nano 6(5), 3832–3840 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

N. Verellen, D. Denkova, B. D. Clercq, A. V. Silhanek, M. Ameloot, P. V. Dorpe, and V. V. Moshchalkov, “Two-photon luminescence of gold nanorods mediated by higher order plasmon modes,” ACS Photonics 2(3), 410–416 (2015).
[Crossref]

Adv. Mater. (1)

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Appl. Phys. Lett. (1)

A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores,” Appl. Phys. Lett. 104(10), 103103 (2014).
[Crossref]

Chem. Soc. Rev. (1)

K. A. Willets, “Super-resolution imaging of SERS hot spots,” Chem. Soc. Rev. 43(11), 3854–3864 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

N. Liu, B. S. Prall, and V. I. Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions,” J. Am. Chem. Soc. 128(48), 15362–15363 (2006).
[Crossref] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126(40), 12730–12731 (2004).
[Crossref] [PubMed]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[Crossref] [PubMed]

J. Disp. Technol. (1)

I. T. Lima and V. R. Marinov, “Volumetric display based on twophoton absorption in quantum dot dispersions,” J. Disp. Technol. 6(6), 221–228 (2010).
[Crossref]

J. Phys. Chem. C (3)

S. Y. Liu, L. Huang, J. F. Li, C. Wang, Q. Li, H. X. Xu, H. L. Guo, Z. M. Meng, Z. Shi, and Z. Y. Li, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

J. Duan, D. Nepal, K. Park, J. E. Haley, J. H. Vella, A. M. Urbas, R. A. Vaia, and R. Pachter, “Computational prediction of molecular photoresponse upon proximity to gold nanorods,” J. Phys. Chem. C 115(29), 13961–13967 (2011).
[Crossref]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

S. T. Sivapalan, J. H. Vella, T. K. Yang, M. J. Dalton, J. E. Haley, T. M. Cooper, A. M. Urbas, L. S. Tan, and C. J. Murphy, “Off-resonant two-photon absorption cross-section enhancement of an organic chromophore on gold nanorods,” J. Phys. Chem. Lett. 4(5), 749–752 (2013).
[Crossref] [PubMed]

Nano Lett. (14)

C. Gruber, A. Trügler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Y. Yin, Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2(4), 427–430 (2002).
[Crossref]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Lett. 11(7), 2725–2730 (2011).
[Crossref] [PubMed]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11(6), 2296–2303 (2011).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref] [PubMed]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[Crossref] [PubMed]

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, “Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler,” Nano Lett. 14(9), 5052–5057 (2014).
[Crossref] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[Crossref] [PubMed]

I. Tanabe and T. Tatsuma, “Plasmonic manipulation of color and morphology of single silver nanospheres,” Nano Lett. 12(10), 5418–5421 (2012).
[Crossref] [PubMed]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Nat. Commun. (6)

J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

L. Su, G. Lu, B. Kenens, S. Rocha, E. Fron, H. Yuan, C. Chen, P. Van Dorpe, M. B. Roeffaers, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-I, “Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy,” Nat. Commun. 6, 6287 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref] [PubMed]

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot,” Nat. Commun. 4, 1447 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Graham, D. G. Thompson, W. E. Smith, and K. Faulds, “Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles,” Nat. Nanotechnol. 3(9), 548–551 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (6)

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[Crossref] [PubMed]

J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Science (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sample, experimental setup and the measurements of spectra and emission dynamics. (a) TEM image of a representative HNW. The HNW with Ag NW core (200 nm in diameter) and SiO2 shell (20 nm in thickness) is clearly observed, and the black dots represent adsorbent CdSe/ZnO QDs. The inset displays high-magnification showing lattice fringes of the QDs. The scale bar in (a) and inset is 200 nm and 5 nm, respectively. (b) Schematic description of the experimental setup. (c) Normalized fluorescence spectra of the pure QDs (solid red line), an individual HNW (solid green line) and Ag NW (solid blue line). The inset shows the spectrum of laser light. (d) Normalized fluorescence decay of an individual HNW: the red dots and green line represent the experimental data and the fitting curve, respectively. Two components are identified in the decay including a fast component of lifetime τ1 = 12 ps and a slow component of lifetime τ2 = 0.219 ns. The inset shows the decay of pure QDs (lifetime τ0 = 6.43 ns). The red squares and blue line represent the experimental data and the fitting curve, respectively.
Fig. 2
Fig. 2 Fluorescence intensity and decay rate mappings with parallel excitation polarization. (a) The map of normalized fluorescence intensity with parallel excitation polarization. The white double-arrows at left corner indicate the excitation polarization. (b) Plot of fluorescence intensity as a function of position along the HNW. (c) The total energy ( | E | 2 ) of the SPPs and light on the HNW resulting from the incident beam with respect to its excitation position calculated by FDTD. (d) and (e) Maps of the fast and slow decay rate 1/τ1 and 1/τ2, respectively. (f) Line profile along the symmetric axis of the HNW in (e). The red dots in (b) and (f) represent the experimental data along the HNW, and blue lines are the fitting curves.
Fig. 3
Fig. 3 Patterns of the dipole mode at 630 nm and 800 nm and transverse mode patterns of the HNW at the fluorescence wavelength. (a) and (b) Patterns of the dipole modes ( | E | 2 ) at 630 nm and 800 nm, respectively. The light source in (a) and (b) is plane wave and the polarization is along the y axis. (c)-(e) Transverse mode patterns ( | E | 2 ) of the TM0, TM1, and TM2 modes for a vacuum wavelength of 630 nm in the HNW, respectively. The light sources in (c)-(d) are TM0, TM1, and TM2 mode SPP source, respectively.
Fig. 4
Fig. 4 FDTD calculated mode-dependent radiative decay rate enhancements and excitation-weighted fluorescence enhancement. (a)-(c) Normalized mode-dependent radiative decay rate enhancements of the TM0, TM1 and TM2 modes, respectively. (d) Excitation-weighted fluorescence enhancement. (e) Intensity distribution along the symmetrical axis of (d).
Fig. 5
Fig. 5 Fluorescence intensity and decay rate mappings with vertical excitation polarization. (a) Map of normalized fluorescence intensity with vertical excitation polarization. The white double-arrows at left corner indicate the excitation polarization. (b) Plot of the fluorescence intensity as a function of position along the axis of the HNW. The red dots in (b) represent the experimental data, and blue line in (b) is the fitting curve. (c) and (d) are the maps of the fast decay rate 1/τ1 and slow decay rate 1/τ2, respectively. The black dashed line indicates approximate size and location of the HNW.
Fig. 6
Fig. 6 (a) Normalized total energy distribution on the HNW when the incident point is on the symmetrical axis of the HNW. (b)-(d) are the normalized mode-dependent radiative decay rate enhancement factors for the TM0, TM1 and TM2 mode, respectively, when the incident point is on the symmetrical axis of the HNW.

Metrics