Abstract

We study spin Hall effect (SHE) of transmitted light in a three-layer waveguide with epsilon-near-zero (ENZ) metamaterial. As the increased loss of anisotropic ENZ metamaterial brings decreased propagation loss for oblique incidence, the transmission of incident light is enhanced which induces a different distribution of transverse shift peaks. Based on simulation results, the influences of ENZ permittivity components and thickness as well as gold layer thickness on transverse shift of left-circularly polarized light in ENZ/Au/ENZ waveguide are analyzed. In order to make our results convincing we make use of alternating thin layers of silver and germanium stacking to construct anisotropic ENZ metamaterial. The transverse shifts of incident light with different ENZ metamaterial and gold layer thicknesses are obtained. Calculation results show the maximum transverse shifts of left-polarized light for linear polarized light can achieve 49.6 microns. Meanwhile, the enhanced SHE of transmitted light is invariant with the variation of gold layer which shows a great tolerance to fabrication error.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon- and mu-near-zero metamaterial slab

Tingting Tang, Jie Li, Li Luo, Ping Sun, and Yanfen Zhang
Opt. Express 25(3) 2347-2354 (2017)

Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate

Jie Li, Tingting Tang, Li Luo, Nengxi Li, and Pengyu Zhang
Opt. Express 25(16) 19117-19128 (2017)

Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab

Wenguo Zhu and Weilong She
Opt. Lett. 40(13) 2961-2964 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  2. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  3. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
    [Crossref]
  4. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  5. F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).
  6. C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
    [Crossref]
  7. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  8. Y. Huang, Z. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
    [Crossref]
  9. S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
    [Crossref]
  10. X. Zhou and X. Ling, “Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  11. N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
    [Crossref]
  12. H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
    [Crossref]
  13. X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
    [Crossref] [PubMed]
  14. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]
  15. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  16. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  17. N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
    [Crossref]
  18. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
    [Crossref] [PubMed]
  19. H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
    [Crossref]
  20. S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
    [Crossref] [PubMed]
  21. L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
    [Crossref]
  22. H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
    [Crossref]
  23. T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
    [Crossref] [PubMed]

2016 (3)

N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
[Crossref]

X. Zhou and X. Ling, “Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

2014 (3)

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

Y. Huang, Z. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

2013 (1)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

2012 (5)

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

2011 (2)

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

2010 (2)

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

2008 (1)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2006 (1)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

1972 (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
[Crossref]

1955 (1)

F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

Aiello, A.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Cheng, Q.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Cui, T. J.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Dinh, X.-Q.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Engheta, N.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Fan, D.

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Fan, Y.

H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
[Crossref]

Fedorov, F. I.

F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

Feng, S.

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Gao, L.

Y. Huang, Z. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Goswami, N.

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Hermosa, N.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Z. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Imbert, C.

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
[Crossref]

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Kar, A.

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Koschny, T.

N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Li, C.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Li, L.

H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
[Crossref]

Ling, X.

X. Zhou and X. Ling, “Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Liu, H.

H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
[Crossref]

Luan, F.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Luo, H.

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Luo, L.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Merano, M.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Roy, I.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Saha, A.

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Shen, N.

N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
[Crossref]

Shi, X.

H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
[Crossref]

Shu, W.

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Soukoulis, C. M.

N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
[Crossref]

Sun, L.

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Tang, T.

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wen, S.

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

Woerdman, J. P.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Yang, X.

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yong, K.-T.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Yu, X.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Yu, Z.

Y. Huang, Z. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Zeng, S.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Zhang, P.

N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
[Crossref]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zhang, Z.

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

Zhou, K.

H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
[Crossref]

Zhou, X.

X. Zhou and X. Ling, “Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Appl. Phys. Lett. (2)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

L. Sun, S. Feng, and X. Yang, “Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 101(24), 241101 (2012).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

F. I. Fedorov, “To the theory of total reflection,” Dokl. Akad. Nauk SSSR 105, 465 (1955).

IEEE Photonics J. (1)

X. Zhou and X. Ling, “Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

J. Opt. (1)

Y. Huang, Z. Yu, and L. Gao, “Tunable spin-dependent splitting of light beam in a chiral metamaterial slab,” J. Opt. 16(7), 075103 (2014).
[Crossref]

Opt. Commun. (1)

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Phys. Rev. A (4)

H. Luo, S. Wen, W. Shu, and D. Fan, “Spin Hall effect of light in photon tunneling,” Phys. Rev. A 82(4), 043825 (2010).
[Crossref]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing the spin Hall effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Phys. Rev. B (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

N. Shen, P. Zhang, T. Koschny, and C. M. Soukoulis, “Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation,” Phys. Rev. B 93(24), 245118 (2016).
[Crossref]

Phys. Rev. D Part. Fields (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
[Crossref]

Phys. Rev. Lett. (4)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

Plasmonics (1)

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics 6(3), 491–506 (2011).
[Crossref]

Sci. Rep. (2)

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4, 7388 (2014).
[Crossref] [PubMed]

T. Tang, C. Li, and L. Luo, “Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide,” Sci. Rep. 6, 30762 (2016).
[Crossref] [PubMed]

Science (2)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Other (1)

H. Liu, Y. Fan, K. Zhou, L. Li, and X. Shi, “High-directivity antenna using reconfigurable near-zero index metamaterial superstrates,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI)(IEEE, 2014),pp.1546–1547.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic for SHE of transmitted light in an ENZ-gold-ENZ waveguide placed in air.
Fig. 2
Fig. 2 Transmittances of p-polarized light (a) and s-polarized light (b) for different FOM.
Fig. 3
Fig. 3 Transverse shift contours (integer multiples of wavelength) of left-circularly polarized light with vertical polarization input for different Re ( ε ) and Im ( ε ) .
Fig. 4
Fig. 4 Transmittances of p-polarized light (a) and s-polarized light (b) for different ENZ metamaterial thickness
Fig. 5
Fig. 5 Transverse shift contours (integer multiples of wavelength) of left-circularly polarized light with horizontal polarization (a) and vertical polarization (b) inputs for different ENZ metamaterial thickness.
Fig. 6
Fig. 6 Transmittances of p-polarized light (a) and s-polarized light (b) for different gold layer thickness.
Fig. 7
Fig. 7 Transverse shift of left-circularly polarized light with horizontal polarization (a) and vertical polarization (b) inputs for different gold layer thickness.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ 2 = ( ε | | ε | | ε )
r 2 = r 12 + r 3 exp ( 2 i k 2 z d 2 ) 1 + r 12 r 3 exp ( 2 i k 2 z d 2 )
r 3 = r 23 + r 4 exp ( 2 i k 3 z d 3 ) 1 + r 23 r 4 exp ( 2 i k 3 z d 3 )
r 4 = r 34 + r 45 exp ( 2 i k 4 z d 4 ) 1 + r 34 r 45 exp ( 2 i k 4 z d 4 )
t = t 12 t 23 t 34 t 45 exp ( i k 2 z d 2 ) exp ( i k 3 z d 3 ) exp ( i k 4 z d 4 )
[ E ˜ t H E ˜ t V ] = [ t p k y ( t p t s ) cot ( θ i ) k y ( t p t s ) cot ( θ i ) t s ] [ E ˜ i H E ˜ i V ]
δ H , V ± = y | E H , V ± | 2 d x d y | E H , V ± | 2 d x d y
δ H ± = ± k 0 w 0 2 cot θ i ( | t p | 2 cos θ t cos θ i Re ( t p t s ) ) k 0 2 w 0 2 | t p | 2 + cot 2 θ i | t p cos θ t cos θ i t s | 2
δ V ± = ± k 0 w 0 2 cot θ i ( | t s | 2 cos θ t cos θ i Re ( t s t p ) ) k 0 2 w 0 2 | t s | 2 + cot 2 θ i | t s cos θ t cos θ i t p | 2
ε | | = 1 f / ε A g + ( 1 f ) / ε G e
ε = f ε A g + ( 1 f ) ε G e

Metrics