Abstract

We report an extraction-controlled terahertz (THz)-frequency quantum cascade laser design in which a diagonal LO-phonon scattering process is used to achieve efficient current injection into the upper laser level of each period and simultaneously extract electrons from the adjacent period. The effects of the diagonality of the radiative transition are investigated, and a design with a scaled oscillator strength of 0.45 is shown experimentally to provide the highest temperature performance. A 3.3 THz device processed into a double-metal waveguide configuration operated up to 123 K in pulsed mode, with a threshold current density of 1.3 kA/cm2 at 10 K. The QCL structures are modeled using an extended density matrix approach, and the large threshold current is attributed to parasitic current paths associated with the upper laser levels. The simplicity of this design makes it an ideal platform to investigate the scattering injection process.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design

Sudeep Khanal, John L. Reno, and Sushil Kumar
Opt. Express 23(15) 19689-19697 (2015)

Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study

Greg Sun, Jacob B. Khurgin, and Din Ping Tsai
Opt. Express 21(23) 28054-28061 (2013)

Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling

S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu
Opt. Express 20(4) 3866-3876 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
    [Crossref]
  3. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
    [Crossref]
  4. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quant. 17, 38–47 (2011).
    [Crossref]
  5. M. Wienold, B. Röben, L. Schrottke, R. Sharma, A. Tahraoui, K. Biermann, and H. T. Grahn, “High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback,” Opt. Express 22, 3334–3348 (2014).
    [Crossref] [PubMed]
  6. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
    [Crossref]
  7. C. W. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
    [Crossref]
  8. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
    [Crossref]
  9. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
    [Crossref]
  10. P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
    [Crossref]
  11. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
    [Crossref] [PubMed]
  12. D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
    [Crossref]
  13. Y. J. Han and J. C. Cao, “Monte carlo simulation of carrier dynamics in terahertz quantum cascade lasers,” J. Appl. Phys. 108, 093111 (2010).
    [Crossref]
  14. Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
    [Crossref]
  15. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
    [Crossref]
  16. S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
    [Crossref]
  17. H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
    [Crossref]
  18. T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
    [Crossref]
  19. S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
    [Crossref]
  20. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
    [Crossref]
  21. K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 Thz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
    [Crossref] [PubMed]
  22. S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
    [Crossref]
  23. A. Wacker, “Extraction-controlled quantum cascade lasers,” Appl. Phys. Lett. 97, 081105 (2010).
    [Crossref]
  24. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
    [Crossref]
  25. A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
    [Crossref]
  26. A. Albo, Q. Hu, and J. L. Reno, “Room temperature negative differential resistance in terahertz quantum cascade laser structures,” Appl. Phys. Lett. 109, 081102 (2016).
    [Crossref]
  27. T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
    [Crossref]
  28. R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
    [Crossref]
  29. A. Grier, “Modelling the optical and electronic transport properties of AlGaAs and AlGaN intersubband devices and optimisation of quantum cascade laser active regions,” PhD thesis, Chapter 4 (Univ. of Leeds, 2015).
  30. E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81, 205311 (2010).
    [Crossref]
  31. C. W. I. Chan, “Towards room-temperature Thz QCLs : directions and design,” PhD thesis, Chapter 6 (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015).
  32. M. Francki, D. O. Winge, J. Wolf, V. Liverini, E. Dupont, V. Trinit, J. Faist, and A. Wacker, “Impact of interface roughness distributions on the operation of quantum cascade lasers,” Opt. Express 23, 5201–5212 (2015).
    [Crossref]

2016 (1)

A. Albo, Q. Hu, and J. L. Reno, “Room temperature negative differential resistance in terahertz quantum cascade laser structures,” Appl. Phys. Lett. 109, 081102 (2016).
[Crossref]

2015 (2)

2014 (4)

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

M. Wienold, B. Röben, L. Schrottke, R. Sharma, A. Tahraoui, K. Biermann, and H. T. Grahn, “High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback,” Opt. Express 22, 3334–3348 (2014).
[Crossref] [PubMed]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

2013 (1)

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

2012 (7)

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

C. W. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 Thz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
[Crossref] [PubMed]

2011 (2)

S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quant. 17, 38–47 (2011).
[Crossref]

2010 (3)

Y. J. Han and J. C. Cao, “Monte carlo simulation of carrier dynamics in terahertz quantum cascade lasers,” J. Appl. Phys. 108, 093111 (2010).
[Crossref]

A. Wacker, “Extraction-controlled quantum cascade lasers,” Appl. Phys. Lett. 97, 081105 (2010).
[Crossref]

E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81, 205311 (2010).
[Crossref]

2009 (3)

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

2008 (1)

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
[Crossref]

2007 (3)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

2003 (2)

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Aers, G.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Albo, A.

A. Albo, Q. Hu, and J. L. Reno, “Room temperature negative differential resistance in terahertz quantum cascade laser structures,” Appl. Phys. Lett. 109, 081102 (2016).
[Crossref]

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

Alhathlool, R.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Ban, D.

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Bertling, K.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Biermann, K.

Burnett, A. D.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Cao, J. C.

Y. J. Han and J. C. Cao, “Monte carlo simulation of carrier dynamics in terahertz quantum cascade lasers,” J. Appl. Phys. 108, 093111 (2010).
[Crossref]

Capasso, F.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Chan, C. W.

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

C. W. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
[Crossref]

Chan, C. W. I.

Chassagneux, Y.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Colombelli, R.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Coudevylle, J. R.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Dean, P.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Dinh, T. V.

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

Dupont, E.

M. Francki, D. O. Winge, J. Wolf, V. Liverini, E. Dupont, V. Trinit, J. Faist, and A. Wacker, “Impact of interface roughness distributions on the operation of quantum cascade lasers,” Opt. Express 23, 5201–5212 (2015).
[Crossref]

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81, 205311 (2010).
[Crossref]

Edamura, T.

Faist, J.

M. Francki, D. O. Winge, J. Wolf, V. Liverini, E. Dupont, V. Trinit, J. Faist, and A. Wacker, “Impact of interface roughness distributions on the operation of quantum cascade lasers,” Opt. Express 23, 5201–5212 (2015).
[Crossref]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Fathololoumi, S.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81, 205311 (2010).
[Crossref]

Fischer, M.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Francki, M.

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Fujita, K.

Furuta, S.

Grahn, H. T.

Gresch, T.

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
[Crossref]

Grier, A.

A. Grier, “Modelling the optical and electronic transport properties of AlGaAs and AlGaN intersubband devices and optimisation of quantum cascade laser active regions,” PhD thesis, Chapter 4 (Univ. of Leeds, 2015).

Han, Y. J.

Y. J. Han and J. C. Cao, “Monte carlo simulation of carrier dynamics in terahertz quantum cascade lasers,” J. Appl. Phys. 108, 093111 (2010).
[Crossref]

Harrison, P.

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
[Crossref]

Hirakawa, K.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Hosako, I.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Hoyler, N.

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Hu, Q.

A. Albo, Q. Hu, and J. L. Reno, “Room temperature negative differential resistance in terahertz quantum cascade laser structures,” Appl. Phys. Lett. 109, 081102 (2016).
[Crossref]

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

C. W. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Huang, S. X.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

Ikonic, Z.

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
[Crossref]

Indjin, D.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jirauschek, C.

Keeley, J.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Kelsall, R. W.

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
[Crossref]

Khanna, S. P.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Klimeck, G.

T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
[Crossref]

K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 Thz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
[Crossref] [PubMed]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kubis, T.

T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
[Crossref]

K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, “Indirectly pumped 3.7 Thz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy,” Opt. Express 20, 20647 (2012).
[Crossref] [PubMed]

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Kumar, S.

S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quant. 17, 38–47 (2011).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Laframboise, S. R.

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Lever, L. J. M.

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Li, L. H.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Lim, Y. L.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Lindskog, M.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Linfield, E. H.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81, 205311 (2010).
[Crossref]

Liu, T.

T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
[Crossref]

Liverini, V.

Mátyás, A.

Rakic, A. D.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Razavipour, S. G.

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Reno, J. L.

A. Albo, Q. Hu, and J. L. Reno, “Room temperature negative differential resistance in terahertz quantum cascade laser structures,” Appl. Phys. Lett. 109, 081102 (2016).
[Crossref]

C. W. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Röben, B.

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Schrottke, L.

Sekine, N.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Sharma, R.

Strupiechonski, E.

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Tahraoui, A.

Taimre, T.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Tanaka, K.

Terazzi, R.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Trinit, V.

Valavanis, A.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

Vogl, P.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Wacker, A.

M. Francki, D. O. Winge, J. Wolf, V. Liverini, E. Dupont, V. Trinit, J. Faist, and A. Wacker, “Impact of interface roughness distributions on the operation of quantum cascade lasers,” Opt. Express 23, 5201–5212 (2015).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

A. Wacker, “Extraction-controlled quantum cascade lasers,” Appl. Phys. Lett. 97, 081105 (2010).
[Crossref]

Walther, C.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

Wang, Q. J.

T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
[Crossref]

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

Wasilewski, Z. R.

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866 (2012).
[Crossref] [PubMed]

Wienold, M.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Winge, D. O.

Wittmann, A.

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
[Crossref]

Wolf, J.

Xu, C.

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

Yamanishi, M.

Yasuda, H.

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Appl. Phys. Lett. (11)

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 Thz,” Appl. Phys. Lett. 91, 131122 (2007).
[Crossref]

C. W. Chan, Q. Hu, and J. L. Reno, “Ground state terahertz quantum cascade lasers,” Appl. Phys. Lett. 101, 151108 (2012).
[Crossref]

D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1347–1349 (2003).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

S. G. Razavipour, E. Dupont, C. W. Chan, C. Xu, Z. R. Wasilewski, S. R. Laframboise, Q. Hu, and D. Ban, “A high carrier injection terahertz quantum cascade laser based on indirectly pumped scheme,” Appl. Phys. Lett. 104, 041111 (2014).
[Crossref]

A. Wacker, “Extraction-controlled quantum cascade lasers,” Appl. Phys. Lett. 97, 081105 (2010).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

A. Albo and Q. Hu, “Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers,” Appl. Phys. Lett. 107, 241101 (2015).
[Crossref]

A. Albo, Q. Hu, and J. L. Reno, “Room temperature negative differential resistance in terahertz quantum cascade laser structures,” Appl. Phys. Lett. 109, 081102 (2016).
[Crossref]

H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, “Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers,” Appl. Phys. Lett. 94, 151109 (2009).
[Crossref]

T. Liu, T. Kubis, Q. J. Wang, and G. Klimeck, “Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green’s function analysis,” Appl. Phys. Lett. 100, 122110 (2012).
[Crossref]

Electron. Lett. (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quant. 17, 38–47 (2011).
[Crossref]

IEEE Transactions on THz Science and Technology (1)

Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, “Limiting factors to the temperature performance of thz quantum cascade lasers based on the resonant-phonon depopulation scheme,” IEEE Transactions on THz Science and Technology 2, 83–92 (2012).
[Crossref]

J. Appl. Phys. (3)

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. Chan, S. G. Razavipour, S. R. Laframboise, S. X. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

Y. J. Han and J. C. Cao, “Monte carlo simulation of carrier dynamics in terahertz quantum cascade lasers,” J. Appl. Phys. 108, 093111 (2010).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

J. Phys. D (1)

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging using quantum cascade lasers - review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Laser & Photonics Reviews (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “Thz and sub-thz quantum cascade lasers,” Laser & Photonics Reviews 3, 45–66 (2009).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Nature Photonics (2)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1, 517–525 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[Crossref]

Nature Physics (1)

S. Kumar, C. W. Chan, Q. Hu, and J. L. Reno, “A 1.8-Thz quantum cascade laser operating significantly above the temperature of ħω/kB,” Nature Physics 7, 166–171 (2011).
[Crossref]

Opt. Express (4)

Phys. Rev. B (3)

E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81, 205311 (2010).
[Crossref]

T. V. Dinh, A. Valavanis, L. J. M. Lever, Z. Ikonic, and R. W. Kelsall, “Extended density-matrix model applied to silicon-based terahertz quantum cascade lasers,” Phys. Rev. B 85, 235427 (2012).
[Crossref]

R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, “Sequential resonant tunneling in quantum cascade lasers,” Phys. Rev. B 78, 155328 (2008).
[Crossref]

Other (2)

A. Grier, “Modelling the optical and electronic transport properties of AlGaAs and AlGaN intersubband devices and optimisation of quantum cascade laser active regions,” PhD thesis, Chapter 4 (Univ. of Leeds, 2015).

C. W. I. Chan, “Towards room-temperature Thz QCLs : directions and design,” PhD thesis, Chapter 6 (Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Calculated conduction band diagram and squared moduli of the electronic wave functions of a three-level design (D2) in GaAs/Al0.15Ga0.85As at an electric field of 20.5 kV/cm. Subbands 2 and 1 are the laser levels, and the carriers are injected from subband 3 to 2 by LO-phonon scattering. The layer sequence of an active module and the design parameters are listed in Table 1.
Fig. 2
Fig. 2 (a) Output power-current density-applied voltage (L-I-V) characteristics of design D2 at various temperatures. (b) Spectra at various current densities and temperatures. The device was 1000 μm long and 110 μm wide, processed into a gold-gold waveguide configuration, and operated in pulsed mode with 2-μs-long pulses at a repetition rate of 10 kHz.
Fig. 3
Fig. 3 (a) IV characteristics of the four designs at 10 K. The regions of the IV curves shown in thicker lines indicate the lasing ranges. Inset: the maximum operating temperatures. (b) Spectra of the four designs at 10 K, measured at the conditions of maximum output power for each. All devices were processed into a gold-gold waveguide configuration, and operated with 2-μs-long voltage pulses at a repetition rate of 10 kHz.
Fig. 4
Fig. 4 Comparison of the calculated and measured IV curves (indicated by a dotted ellipse), and the calculated gain as a function of the electric field, of design D2 at 10 K.
Fig. 5
Fig. 5 Calculated resonant tunneling current between neighboring periods of design D2 at 10 K. (a) Total injection current contribution from the upstream period to different subbands 1, 2, and 3. i′ indicates subbands 1′, 2′ and 3′ in the upstream period. (b) Total extraction current contribution from different subband levels to the downstream period. i″ indicates subbands 1″, 2″ and 3″ in the downstream period.
Fig. 6
Fig. 6 Temperature evolution of subband lifetime and the key carrier transport time for design D2. (a) The lifetime of subband 3 and the carrier transport time from level 3 to the lower subbands. (b) The lifetime of subbands 2 and 1, and the carrier transport time from level 2 to the lower subbands. i″ indicates subbands 1″, 2″ and 3″ in the downstream period.
Fig. 7
Fig. 7 Calculated carrier transport time of the key relaxation processes from subbands 3, 2 and 1 at the design biases for each versus the scaled oscillator strength.
Fig. 8
Fig. 8 Calculated peak gain of the four designs as a function of the lattice temperature. The dotted line is the estimated loss of QCLs with gold-gold waveguide configurations.

Tables (1)

Tables Icon

Table 1 Overview of the layer sequences and key parameters of the four designs. The layer thicknesses of one active module are given with the Al0.15Ga0.85As barriers in bold and GaAs wells in plain text. The underlined wells are doped with Si at the level of 2.66 × 1016 cm−3, 2.61×1016 cm−3, 2.62×1016 cm−3 and 2.58×1016 cm−3 for D1 – D4 respectively, yielding average bulk level of 5.0 × 1015 cm−3 per period. E3 −E2 is the energy separation between subbands 3 and 2, E2 − E1 is the energy separation between subbands 2 and 1, f21 is the scaled oscillator strength, and Δ1′3 is the anticrossing gap energy of the subbands 1′ and 3. The principal difference between the four designs is the optical transition diagonality, which is characterized by f21.

Metrics