Abstract

Noncontact terahertz time-domain spectroscopy was employed to measure pressure-dependent refractive indices of gases such as helium (He), argon (Ar), krypton (Kr), oxygen (O2), nitrogen (N2), methane (CH4), and carbon dioxide (CO2). The refractive indices of these gases scaled linearly with pressure, for pressures in the 55–3,750 torr range. At the highest pressure, the refractive indices ((n-1) x 106) of He and CO2 were 170 and 2,390, respectively. The refractive index of CO2 was 14.1-fold higher than that of He, owing to the stronger polarizability of CO2. Although the studied gases differed in terms of their molecular structure, their refractive indices were strongly determined by polarizability. The measured refractive indices agreed well with the theoretical calculations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials

Philip E. Ciddor
Appl. Opt. 41(12) 2292-2298 (2002)

Precise determination of refractometric parameters for anesthetic agent vapors

J. M. Allison, K. P. Birch, and J. G. Crowder
Appl. Opt. 33(13) 2459-2464 (1994)

910-m propagation of THz ps pulses through the Atmosphere

Gyeong-Ryul Kim, Tae-In Jeon, and D. Grischkowsky
Opt. Express 25(21) 25422-25434 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [Crossref] [PubMed]
  2. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory,” Opt. Express 22(4), 4388–4403 (2014).
    [Crossref] [PubMed]
  3. E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-path THz-TDS atmospheric measurements between buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
    [Crossref]
  4. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66(14), 1834–1837 (1991).
    [Crossref] [PubMed]
  5. S. H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of THz radiation,” J. Opt. Soc. B 8(8), 1642–1651 (1991).
    [Crossref]
  6. Y. Clergent, C. Durou, and M. Laurens, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 43(10), 107804 (2014).
  7. E. S. Lee and T.-I. Jeon, “PPWG tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
    [Crossref] [PubMed]
  8. E. S. Lee, Y. B. Ji, and T. I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
    [Crossref]
  9. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  10. H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
    [Crossref]
  11. B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
    [Crossref]
  12. W. Hauf and U. Grigull, “Optical methods in heat transfer,” Adv. Heat Transf. 6, 133–366 (1970).
    [Crossref]
  13. M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]
  14. L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).
  15. W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
    [Crossref]
  16. C. R. Mansfield and E. R. Peck, “Dispersion of helium,” J. Opt. Soc. Am. 59(2), 199–203 (1969).
    [Crossref]
  17. Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
    [Crossref]
  18. Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
    [Crossref]
  19. J. Zhang, Z. H. Lu, and L. J. Wang, “Precision refractive index measurements of air, N2, O2, Ar, and CO2 with a frequency comb,” Appl. Opt. 47(17), 3143–3151 (2008).
    [Crossref] [PubMed]
  20. P. Křen, “Precision refractive index measurements of air, N2, O2, Ar, and CO2 with a frequency comb,” Appl. Opt. 50(35), 6484–6486 (2011).
    [Crossref] [PubMed]
  21. E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56(8), 1059–1063 (1963).
    [Crossref]
  22. S. Loria Über, “Die dispersion des lichtes in gasförmigen kohlenwasserstoffen,” Ann. Phys. 334(8), 605–622 (1909).
    [Crossref]
  23. Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen and carbon dioxide at λ = 632.8 nm (He-Ne laser light) in the range 288.15 K e T e 323.15 K, 0 < p < 110 kPa,” Chem. Eng. J. 44(2), 197–199 (1999).
  24. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36(7), 1540–1546 (1997).
    [Crossref] [PubMed]
  25. David R. Lide Editor in chief, Handbook of Chemistry and Physics (D. R. Lide, 1995–1996).
  26. P. Pacák, “Molar refractivity and interactions in solution 1. Molar refractivity of some monovalent ions in aqueous and dimethyl sulfoxide solution,” Chem. Pap. 43(4), 289–500 (1989).

2015 (3)

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-path THz-TDS atmospheric measurements between buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

2014 (2)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory,” Opt. Express 22(4), 4388–4403 (2014).
[Crossref] [PubMed]

Y. Clergent, C. Durou, and M. Laurens, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 43(10), 107804 (2014).

2012 (2)

E. S. Lee and T.-I. Jeon, “PPWG tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
[Crossref] [PubMed]

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

2011 (1)

2010 (1)

E. S. Lee, Y. B. Ji, and T. I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[Crossref]

2008 (1)

2001 (1)

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

1999 (2)

B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
[Crossref]

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen and carbon dioxide at λ = 632.8 nm (He-Ne laser light) in the range 288.15 K e T e 323.15 K, 0 < p < 110 kPa,” Chem. Eng. J. 44(2), 197–199 (1999).

1997 (1)

1991 (2)

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66(14), 1834–1837 (1991).
[Crossref] [PubMed]

S. H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of THz radiation,” J. Opt. Soc. B 8(8), 1642–1651 (1991).
[Crossref]

1989 (2)

M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
[Crossref] [PubMed]

P. Pacák, “Molar refractivity and interactions in solution 1. Molar refractivity of some monovalent ions in aqueous and dimethyl sulfoxide solution,” Chem. Pap. 43(4), 289–500 (1989).

1981 (1)

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
[Crossref]

1973 (1)

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

1970 (1)

W. Hauf and U. Grigull, “Optical methods in heat transfer,” Adv. Heat Transf. 6, 133–366 (1970).
[Crossref]

1969 (1)

1963 (1)

1909 (1)

S. Loria Über, “Die dispersion des lichtes in gasförmigen kohlenwasserstoffen,” Ann. Phys. 334(8), 605–622 (1909).
[Crossref]

Abjean, R.

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
[Crossref]

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Bettiol, A. A.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Bideau-Mehu, Y.

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
[Crossref]

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Chaker, M.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Cheville, R. A.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

Chiam, S.-Y.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Clergent, Y.

Y. Clergent, C. Durou, and M. Laurens, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 43(10), 107804 (2014).

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen and carbon dioxide at λ = 632.8 nm (He-Ne laser light) in the range 288.15 K e T e 323.15 K, 0 < p < 110 kPa,” Chem. Eng. J. 44(2), 197–199 (1999).

Cong, L.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Delprat, S.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Durou, C.

Y. Clergent, C. Durou, and M. Laurens, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 43(10), 107804 (2014).

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen and carbon dioxide at λ = 632.8 nm (He-Ne laser light) in the range 288.15 K e T e 323.15 K, 0 < p < 110 kPa,” Chem. Eng. J. 44(2), 197–199 (1999).

Exter, M.

Fattinger, C.

Flanders, B. N.

B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
[Crossref]

Ge, L.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Ghosh, G.

Grigull, U.

W. Hauf and U. Grigull, “Optical methods in heat transfer,” Adv. Heat Transf. 6, 133–366 (1970).
[Crossref]

Grischkowsky, D.

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-path THz-TDS atmospheric measurements between buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
[Crossref]

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory,” Opt. Express 22(4), 4388–4403 (2014).
[Crossref] [PubMed]

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66(14), 1834–1837 (1991).
[Crossref] [PubMed]

S. H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of THz radiation,” J. Opt. Soc. B 8(8), 1642–1651 (1991).
[Crossref]

M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
[Crossref] [PubMed]

Guern, Y.

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
[Crossref]

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Harde, H.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66(14), 1834–1837 (1991).
[Crossref] [PubMed]

Harde, S. H.

S. H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of THz radiation,” J. Opt. Soc. B 8(8), 1642–1651 (1991).
[Crossref]

Hauf, W.

W. Hauf and U. Grigull, “Optical methods in heat transfer,” Adv. Heat Transf. 6, 133–366 (1970).
[Crossref]

Jeon, T. I.

E. S. Lee, Y. B. Ji, and T. I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[Crossref]

Jeon, T.-I.

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-path THz-TDS atmospheric measurements between buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
[Crossref]

E. S. Lee and T.-I. Jeon, “PPWG tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
[Crossref] [PubMed]

Ji, Y. B.

E. S. Lee, Y. B. Ji, and T. I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[Crossref]

Johannin-Gilles, A.

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
[Crossref]

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Keiding, S.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66(14), 1834–1837 (1991).
[Crossref] [PubMed]

Khanna, B. N.

Kren, P.

Laurens, M.

Y. Clergent, C. Durou, and M. Laurens, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 43(10), 107804 (2014).

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen and carbon dioxide at λ = 632.8 nm (He-Ne laser light) in the range 288.15 K e T e 323.15 K, 0 < p < 110 kPa,” Chem. Eng. J. 44(2), 197–199 (1999).

Lederer, F.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Lee, E. S.

E. S. Lee and T.-I. Jeon, “PPWG tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
[Crossref] [PubMed]

E. S. Lee, Y. B. Ji, and T. I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[Crossref]

Leng, W.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Li, S.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Loria Über, S.

S. Loria Über, “Die dispersion des lichtes in gasförmigen kohlenwasserstoffen,” Ann. Phys. 334(8), 605–622 (1909).
[Crossref]

Lu, Z. H.

Ma, Y.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Mandehgar, M.

Manjappa, M.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Mansfield, C. R.

Moon, E.-B.

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-path THz-TDS atmospheric measurements between buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
[Crossref]

Naib, L. A.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Ozaki, T.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Pacák, P.

P. Pacák, “Molar refractivity and interactions in solution 1. Molar refractivity of some monovalent ions in aqueous and dimethyl sulfoxide solution,” Chem. Pap. 43(4), 289–500 (1989).

Peck, E. R.

Rocheleau, D.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Rockstuhl, C.

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Scherer, N. F.

B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
[Crossref]

Shang, X.

B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
[Crossref]

Singh, R.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

Wang, L. J.

Wang, W.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Wolff, M.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

Xiao, L.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Yang, Y.

Zhan, H.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Zhang, J.

Zhang, W.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Zhao, J.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

Zhao, K.

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

Adv. Heat Transf. (1)

W. Hauf and U. Grigull, “Optical methods in heat transfer,” Adv. Heat Transf. 6, 133–366 (1970).
[Crossref]

Ann. Phys. (1)

S. Loria Über, “Die dispersion des lichtes in gasförmigen kohlenwasserstoffen,” Ann. Phys. 334(8), 605–622 (1909).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. A. Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, and T. Ozaki, “Excitaion of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 071108 (2012).

E. S. Lee, Y. B. Ji, and T. I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett. 97(18), 181112 (2010).
[Crossref]

Chem. Eng. J. (1)

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen and carbon dioxide at λ = 632.8 nm (He-Ne laser light) in the range 288.15 K e T e 323.15 K, 0 < p < 110 kPa,” Chem. Eng. J. 44(2), 197–199 (1999).

Chem. Pap. (1)

P. Pacák, “Molar refractivity and interactions in solution 1. Molar refractivity of some monovalent ions in aqueous and dimethyl sulfoxide solution,” Chem. Pap. 43(4), 289–500 (1989).

Chin. Phys. B (1)

Y. Clergent, C. Durou, and M. Laurens, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 43(10), 107804 (2014).

Fuel (1)

W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84–88 (2015).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

E.-B. Moon, T.-I. Jeon, and D. Grischkowsky, “Long-path THz-TDS atmospheric measurements between buildings,” IEEE Trans. Terahertz Sci. Technol. 5(5), 742–750 (2015).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. B (1)

S. H. Harde and D. Grischkowsky, “Coherent transients excited by subpicosecond pulses of THz radiation,” J. Opt. Soc. B 8(8), 1642–1651 (1991).
[Crossref]

J. Phys. Chem. (1)

B. N. Flanders, X. Shang, N. F. Scherer, and D. Grischkowsky, “The pure rotational spectrum of solvated HCl: solute-bath interaction strength and dynamics,” J. Phys. Chem. 103(49), 10054–10064 (1999).
[Crossref]

J. Phys. Chem. A (1)

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105(25), 6028–6047 (2001).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7-140.4 nm wavelength range. dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25(5), 395–402 (1981).
[Crossref]

Opt. Commun. (1)

Y. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66(14), 1834–1837 (1991).
[Crossref] [PubMed]

Other (2)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).

David R. Lide Editor in chief, Handbook of Chemistry and Physics (D. R. Lide, 1995–1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of experimental setup.
Fig. 2
Fig. 2 Measured THz reference pulse (transmitted through an empty gas cell at a 55 torr pressure (block)) and sample pulses for different gas pressures. The vertical dashed lines indicate the peak positions of the first and the last THz pulses. (a) The results for helium. (b) The results for oxygen. (c) The results for krypton. (d) The results for carbon dioxide.
Fig. 3
Fig. 3 Pressure dependence of refractive indices ((n-1) 106). (a) The results for helium. (b) The results for oxygen. (c) The results for krypton. (d) The results for carbon dioxide.
Fig. 4
Fig. 4 Refractive indices ((n-1) 106) vs. pressure. The solid lines indicate theoretical calculations using the Sellmeier coefficients. The dashed line indicates theoretical calculation using the polarizability of CO2 obtained from the CRC handbook [25]. The inset shows an expanded view, for pressures from 340 torr to 800 torr.
Fig. 5
Fig. 5 Gas polarizability vs. the gas refractive index ((n-1) 106). The solid lines indicate the fits to the pressure-dependence measurements.

Tables (2)

Tables Icon

Table 1 Parameters for comparing experimental measurements to theoretical calculations (temperature: 293.12 K; pressure: 760 torr))

Tables Icon

Table 2 Refractive indices (n-1) 106 of CO2, at different pressures (temperature: 293.12 K).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 (λ)=1+ i B i λ 2 λ 2 C i ,
n(ρ)1= 3 2 rMP RT ,
R n = M ρ n 2 1 n 2 +2 ,
α'=3 R n /(4π N A ),

Metrics