J. Wang, M. Wang, J. Xu, L. Peng, M. Yang, M. Xia, and D. Jiang, “Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity,” Appl. Opt. 53(28), 6494–6502 (2014).

[Crossref]
[PubMed]

A. Lamberti, S. Vanlanduit, B. De Pauw, and F. Berghmans, “A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors,” Opt. Express 22(6), 7099–7112 (2014).

[Crossref]
[PubMed]

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

L. R. Watkins, “Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms,” Opt. Lasers Eng. 50(8), 1015–1022 (2012).

[Crossref]

S. A. Taya and T. M. El-Agez, “Optical sensors based on Fabry–Perot resonator and fringes of equal thickness structure,” Optik (Stuttg.) 123(5), 417–421 (2012).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

A. Federico and G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41(12), 3209–3216 (2002).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

S. A. Taya and T. M. El-Agez, “Optical sensors based on Fabry–Perot resonator and fringes of equal thickness structure,” Optik (Stuttg.) 123(5), 417–421 (2012).

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

A. Federico and G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41(12), 3209–3216 (2002).

[Crossref]

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

J. H. Zhao, M. Z. Luo, Y. K. Shi, and J. L. Hua, “Detection of impact induced stress waves using a novel optical fiber Fabry-Perot sensor,” in Proceedings of IEEE Conference on Measuring Technology and Mechatronics Automation (IEEE, 2010), pp. 1093–1096.

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

A. Federico and G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41(12), 3209–3216 (2002).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

J. H. Zhao, M. Z. Luo, Y. K. Shi, and J. L. Hua, “Detection of impact induced stress waves using a novel optical fiber Fabry-Perot sensor,” in Proceedings of IEEE Conference on Measuring Technology and Mechatronics Automation (IEEE, 2010), pp. 1093–1096.

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

J. H. Zhao, M. Z. Luo, Y. K. Shi, and J. L. Hua, “Detection of impact induced stress waves using a novel optical fiber Fabry-Perot sensor,” in Proceedings of IEEE Conference on Measuring Technology and Mechatronics Automation (IEEE, 2010), pp. 1093–1096.

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

S. A. Taya and T. M. El-Agez, “Optical sensors based on Fabry–Perot resonator and fringes of equal thickness structure,” Optik (Stuttg.) 123(5), 417–421 (2012).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

J. Wang, M. Wang, J. Xu, L. Peng, M. Yang, M. Xia, and D. Jiang, “Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity,” Appl. Opt. 53(28), 6494–6502 (2014).

[Crossref]
[PubMed]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

J. H. Zhao, M. Z. Luo, Y. K. Shi, and J. L. Hua, “Detection of impact induced stress waves using a novel optical fiber Fabry-Perot sensor,” in Proceedings of IEEE Conference on Measuring Technology and Mechatronics Automation (IEEE, 2010), pp. 1093–1096.

[Crossref]

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211(1–6), 47–51 (2002).

[Crossref]

A. Federico and G. H. Kaufmann, “Evaluation of the continuous wavelet transform method for the phase measurement of electronic speckle pattern interferometry fringes,” Opt. Eng. 41(12), 3209–3216 (2002).

[Crossref]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).

L. R. Watkins, “Review of fringe pattern phase recovery using the 1-D and 2-D continuous wavelet transforms,” Opt. Lasers Eng. 50(8), 1015–1022 (2012).

[Crossref]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47(12), 1348–1361 (2009).

[Crossref]

S. A. Taya and T. M. El-Agez, “Optical sensors based on Fabry–Perot resonator and fringes of equal thickness structure,” Optik (Stuttg.) 123(5), 417–421 (2012).

[Crossref]

J. L. Li, X. R. Gao, Z. Y. Wang, Q. K. Zhao, and L. Luo, “Three dimensional detection of rail shape based on self-adaptive filtering,” Proc. SPIE 9282, 928211 (2014).

[Crossref]

S. M. Musa, R. O. Claus, J. H. Reed, R. L. Simpson, and A. Wang, Real-time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System (Virginia Polytechnic Institute and State University, 1997).

J. H. Zhao, M. Z. Luo, Y. K. Shi, and J. L. Hua, “Detection of impact induced stress waves using a novel optical fiber Fabry-Perot sensor,” in Proceedings of IEEE Conference on Measuring Technology and Mechatronics Automation (IEEE, 2010), pp. 1093–1096.

[Crossref]