Abstract

In this paper, we used a thin polycarbonate (PC) chamber to improve the performance of an electrowetting lenticular lens array. The polycarbonate chamber changed the radius of curvature (ROC) of the oil acting as a lens, which increased the dioptric power of the liquid lens to 1666.7D. The increase in dioptric power required a reduction in the distance between the optical center of the lens and the display pixels under the chamber, which was accomplished by reducing the thickness of the chamber. The optimal thickness of the chamber was determined to be 0.5mm. Using this thin PC chamber, transmittance and viewing angle were measured and compared with an electrowetting lenticular lens with a conventional 1mm poly methyl methacrylate (PMMA) chamber was done. Crosstalk which degrades clear 3D images, is an inevitable factor in lenticular lens type multi-view systems. With the 0.5mm PC chamber, the viewing zone was expanded and the ratio of the crosstalk area was reduced, which resulted in a clear 3D image. The new method of depositing the electrode layer also ensured the uniform operation of the liquid lens array.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of oil on an electrowetting lenticular lens and related optical characteristics

Dooseub Shin, Junoh Kim, Cheoljoong Kim, Gyo Hyun Koo, Jee Hoon Sim, Junsik Lee, and Yong Hyub Won
Appl. Opt. 56(7) 1886-1892 (2017)

Electro-wetting lenticular lens with improved diopter for 2D and 3D conversion using lens-shaped ETPTA chamber

Junoh Kim, Dooseub Shin, Junsik Lee, Gyohyun Koo, Cheoljoong Kim, Jee Hoon Sim, Gyusuk Jung, and Yong Hyub Won
Opt. Express 26(15) 19614-19626 (2018)

Aberration analyses for improving the frontal projection three-dimensional display

Xin Gao, Xinzhu Sang, Xunbo Yu, Peng Wang, Xuemei Cao, Lei Sun, Binbin Yan, Jinhui Yuan, Kuiru Wang, Chongxiu Yu, and Wenhua Dou
Opt. Express 22(19) 23496-23511 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in Proceedings of International Broadcasting Convention, vol. 2. (1999).
  2. H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).
  3. T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
    [Crossref] [PubMed]
  4. G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
    [Crossref]
  5. W.-X. Zhao, Q.-H. Wang, A.-H. Wang, and D.-H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
    [Crossref] [PubMed]
  6. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011).
    [Crossref] [PubMed]
  7. M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
    [Crossref]
  8. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  9. C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).
  10. Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
    [Crossref]
  11. Y. Limura, T. Teshima, and Y. J. Heo, T, Morimoto, S. Toshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proceedings of IEEE Conference on Tranducers (IEEE, 2013), pp. 16–20.
  12. C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
    [Crossref]
  13. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  14. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref] [PubMed]
  15. J. Lee, Y. Kim, and Y. Won, “Novel concept electrowetting microlens array based on passive matrix,” IEEE Photonics Technol. Lett. 28(2), 167–170 (2016).
    [Crossref]
  16. W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74(6), 349–366 (1997).
    [Crossref] [PubMed]
  17. W. A. MacDonald, “Engineered films for display technologies,” J. Mater. Chem. 14(1), 4–10 (2004).
    [Crossref]
  18. X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).
    [Crossref]
  19. X. Li, Q. Wang, Y. Tao, D. Li, and A. Wang, “Crosstalk reduction in multi-view autostereoscopic three-dimensional display based on lenticular sheet,” Chin. Opt. Lett. 9(2), 021001 (2011).
    [Crossref]
  20. Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
    [Crossref] [PubMed]

2016 (3)

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

J. Lee, Y. Kim, and Y. Won, “Novel concept electrowetting microlens array based on passive matrix,” IEEE Photonics Technol. Lett. 28(2), 167–170 (2016).
[Crossref]

2015 (1)

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

2012 (1)

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

2011 (4)

2010 (2)

C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).

W.-X. Zhao, Q.-H. Wang, A.-H. Wang, and D.-H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

2008 (1)

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (1)

W. A. MacDonald, “Engineered films for display technologies,” J. Mater. Chem. 14(1), 4–10 (2004).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

1997 (1)

W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74(6), 349–366 (1997).
[Crossref] [PubMed]

1993 (1)

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Abeysinghe, D. C.

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Chen, C.

C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).

DeFanti, T. A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Fan, J.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Harris, W. F.

W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74(6), 349–366 (1997).
[Crossref] [PubMed]

Haus, J. W.

Heikenfeld, J.

Heo, Y.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Heo, Y. J.

Y. Limura, T. Teshima, and Y. J. Heo, T, Morimoto, S. Toshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proceedings of IEEE Conference on Tranducers (IEEE, 2013), pp. 16–20.

Hinnen, K.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

Huang, J.

C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).

Huang, Y.

C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).

C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).

Iimura, Y.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Isono, H.

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Johnson, A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Kim, C.

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Kim, J.

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Kim, Y.

J. Lee, Y. Kim, and Y. Won, “Novel concept electrowetting microlens array based on passive matrix,” IEEE Photonics Technol. Lett. 28(2), 167–170 (2016).
[Crossref]

Koo, G.

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Kooima, R. L.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Lambooij, M.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

Lee, J.

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

J. Lee, Y. Kim, and Y. Won, “Novel concept electrowetting microlens array based on passive matrix,” IEEE Photonics Technol. Lett. 28(2), 167–170 (2016).
[Crossref]

Leigh, J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Li, D.

Li, D. H.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).
[Crossref]

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

Li, D.-H.

Li, X.

Li, X. F.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).
[Crossref]

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

Limura, Y.

Y. Limura, T. Teshima, and Y. J. Heo, T, Morimoto, S. Toshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proceedings of IEEE Conference on Tranducers (IEEE, 2013), pp. 16–20.

Lv, G. J.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Lv, J. J.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

MacDonald, W. A.

W. A. MacDonald, “Engineered films for display technologies,” J. Mater. Chem. 14(1), 4–10 (2004).
[Crossref]

Morimoto, Y.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Nakamura, J.

Onoe, H.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Peterka, T.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Sandin, D. J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

Sasazawa, H.

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Sato, S.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Shin, D.

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Smith, N. R.

Takaki, Y.

Takeuchi, S.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Tanaka, K.

Tao, Y.

Teshima, T.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Y. Limura, T. Teshima, and Y. J. Heo, T, Morimoto, S. Toshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proceedings of IEEE Conference on Tranducers (IEEE, 2013), pp. 16–20.

Varekamp, C.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

Wang, A.

Wang, A. H.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).
[Crossref]

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

Wang, A.-H.

Wang, Q.

Wang, Q. H.

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).
[Crossref]

Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt. 50(7), B1–B5 (2011).
[Crossref] [PubMed]

Wang, Q.-H.

Won, Y.

J. Lee, Y. Kim, and Y. Won, “Novel concept electrowetting microlens array based on passive matrix,” IEEE Photonics Technol. Lett. 28(2), 167–170 (2016).
[Crossref]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

Wu, F.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Wu, R.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Yasuda, M.

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Yoshida, S.

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Zhao, B. C.

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Zhao, W.-X.

Zhou, L.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Electron. Commun. Jpn. (1)

H. Isono, M. Yasuda, and H. Sasazawa, “Autostereoscopic 3D display using LCD-generated parallax barrier,” Electron. Commun. Jpn. 76(7), 77–84 (1993).

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

IEEE J. Display Technol. (2)

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating Autostereoscopic Lenticular Designs,” IEEE J. Display Technol. 8(5), 283–290 (2012).
[Crossref]

X. F. Li, Q. H. Wang, D. H. Li, and A. H. Wang, “Image processing to eliminate crosstalk between neighboring view images in three-dimensional lenticular display,” IEEE J. Display Technol. 7(8), 443–447 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Lee, Y. Kim, and Y. Won, “Novel concept electrowetting microlens array based on passive matrix,” IEEE Photonics Technol. Lett. 28(2), 167–170 (2016).
[Crossref]

C. Kim, J. Kim, D. Shin, J. Lee, G. Koo, and Y. Won, “Electrowetting lenticular lens for a multi-view autostereoscopic 3D display,” IEEE Photonics Technol. Lett. 28(22), 2479–2482 (2016).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[Crossref] [PubMed]

J. Mater. Chem. (1)

W. A. MacDonald, “Engineered films for display technologies,” J. Mater. Chem. 14(1), 4–10 (2004).
[Crossref]

J. Micromech. Microeng. (1)

Y. Iimura, H. Onoe, T. Teshima, Y. Heo, S. Yoshida, Y. Morimoto, and S. Takeuchi, “Liquid-filled tunable lenticular lens,” J. Micromech. Microeng. 25(3), 035030 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik (Stuttg.) (1)

G. J. Lv, F. Wu, R. Wu, B. C. Zhao, J. Fan, and J. J. Lv, “High resolution parallax barrier 3D display based on a sub display panel with transparent slits,” Optik (Stuttg.) 127(7), 3569–3571 (2016).
[Crossref]

Optom. Vis. Sci. (1)

W. F. Harris, “Dioptric power: its nature and its representation in three- and four-dimensional space,” Optom. Vis. Sci. 74(6), 349–366 (1997).
[Crossref] [PubMed]

SID. Int. Symp. Dig. Tec. (1)

C. Chen, Y. Huang, Y. Huang, and J. Huang, “Fast switching fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID. Int. Symp. Dig. Tec. 41(1) 428–431 (2010).

Other (2)

Y. Limura, T. Teshima, and Y. J. Heo, T, Morimoto, S. Toshida, H. Onoe, and S. Takeuchi, “Microfluidically tunable lenticular lens,” in Proceedings of IEEE Conference on Tranducers (IEEE, 2013), pp. 16–20.

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in Proceedings of International Broadcasting Convention, vol. 2. (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of 2D/3D convertible electrowetting lenticular lens (a) Concave lens state at 0V (b) 2D display when the lens shape is flat (c) 3D display when the lens shape is convex.
Fig. 2
Fig. 2 Lens focal point according to the chamber material. (a),(b) well-focused design (c),(d) mis-focused design.
Fig. 3
Fig. 3 Conceptual drawing of (a) a small numerical aperture (large circle of confusion) (b) a large numerical aperture (small circle of confusion).
Fig. 4
Fig. 4 (a) PC chamber fabrication process (b) Ni mold after electroplating (c) enlarged picture and side view of the Ni mold (d) PC chamber after hot embossing.
Fig. 5
Fig. 5 Electrowetting lenticular lens array fabrication. (a) PC chamber with slanted walls (b) Au deposition (c) parylene C and Teflon deposition (d) gasket fabrication (e) oil dosing in a water bath (f) sealing the device with an ITO glass (g) deposition of the electrode layer on one side wall using thermal evaporator.
Fig. 6
Fig. 6 Dioptric power measurement (a) schematic of the electrowetting lenticular lens array placed on a striped pattern (b) 0V (c) 18V (d) 24V.
Fig. 7
Fig. 7 Dioptric power of the PC and PMMA chamber depending on the applied voltage.
Fig. 8
Fig. 8 Multi-view image through the liquid lenticular lens with the PC chamber (a) two objects are seen at 0V (b),(c) each of the objects can be separately seen from a different angle.
Fig. 9
Fig. 9 Experimental setup of viewing angle measurement.
Fig. 10
Fig. 10 Electrowetting lenticular lens array viewing angle experiment with the 0.5mm PC chamber (a,b) and the 1mm PMMA chamber (c,d).
Fig. 11
Fig. 11 Theoretical transmittance versus the thickness of the PC and PMMA at visible range.
Fig. 12
Fig. 12 (a) Experimental setup of measuring the transmittance of the device (b) Transmittance of the electrowetting lenticular lens using 1mm PMMA, 1mm PC, and 0.5mm PC.
Fig. 13
Fig. 13 Uniformity test.

Tables (1)

Tables Icon

Table 1 Dioptric power of the liquid lenticular lens with 0.5mm PC, 1mm PC, and 1mm PMMA chamber.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

DioptricPower[ D ]= 1 f =( n 1 n 2 ) 1 R ,
NA= nD 2f ,
r=0.61 λ NA ,
D= 1 f =( 1 1 M ) 1 d ,
M= tan θ 1 tan θ 2 ,
Crosstalk ( % ) 1 st viewpoint = ( i=1 N I i I 1 st ) I 1 st .
I I 0 = e αt ,

Metrics