Abstract

We report third-harmonic generation (THG) at 355 nm in CsLiB6O10 (CLBO) by using sum-frequency mixing process. As a fundamental laser source, we employ a hybrid master oscillator power amplifier (MOPA) system seeded by a gain-switched laser diode (GS-LD) at 1064 nm to produce narrow spectral picosecond pulses. Both CLBO and walk-off compensated prism-coupled CLBO device generate over 30-W output of 355-nm UV lights, which means walk-off effect in CLBO is negligible in the picosecond laser system. The maximum THG conversion efficiency from the fundamental reaches about 48%, which is 1.2 times higher than that of LiB3O5 (LBO). Theoretical THG outputs with CLBO and LBO are numerically calculated in order to verify the validity of these experimental results in detail.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient 355-nm generation in CsB3O5 crystal

H. Kitano, T. Matsui, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, and T. Sasaki
Opt. Lett. 28(4) 263-265 (2003)

All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals

Jun Sakuma, Kyoich Deki, Andrew Finch, Yasu Ohsako, and Toshio Yokota
Appl. Opt. 39(30) 5505-5511 (2000)

High-efficiency third harmonic generation at 355nm based on La2CaB10O19

Jianxiu Zhang, Lirong Wang, Yang Wu, Guiling Wang, Peizhen Fu, and Yicheng Wu
Opt. Express 19(18) 16722-16729 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).
  2. R. S. Patel, A. Tamhankar, and T. Edwards, “Diode-pumped solid-state UV lasers improve LED sapphire wafer scribing,” Photon. Spectra 44(10), 46–48 (2010).
  3. J. Bovatsek, A. Tamhankar, and R. Patel, “UV lasers improve PCB manufacturing processes,” Laser Focus World 48(11), 48–52 (2012).
  4. C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principals and Applications (Wiley-VCH, 2012) 1st ed., Chap. 3.
  5. D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).
  6. X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
  7. N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).
  8. X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).
  9. D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).
  10. N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).
  11. L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).
  12. A. V. Smith, SNLO nonlinear optics code [ http://www.as-photonics.com/snlo ].
  13. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
  14. N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” Advanced Solid-State Lasers (OSA, Washington, D.C, OSA TOPS 26, 715–719 (1999).
  15. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
  16. I. Shoji, H. Nakamura, R. Ito, T. Kondo, M. Yoshimura, Y. Mori, and T. Sasaki, “Absolute measurement of second-order nonlinear optical coefficients of CsLiB6O10 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 18(3), 302–307 (2001).
  17. C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).
  18. K. Ueda, M. Yoshimura, C. Qu, Y. Takahashi, and Y. Mori, “Non-collinear phase-matched 355 nm UV generation in a prism-coupled CsLiB6O10 crystal,” OSA ASSL 2015, AM2A.5 (2015).
  19. Y. Orii, Y. Takushima, M. Yamagaki, A. Higashitani, S. Matsubara, S. Murayama, T. Manabe, I. Utsumi, D. Okuyama, and G. Okada, “High-energy 266-nm picosecond pulse generation from a narrow spectral bandwidth gain-switched LD MOPA,” Tech. Digest of CLEO 2013, JTh2A.64 (2013).
  20. K. Ueda, Y. Orii, Y. Takahashi, G. Okada, Y. Mori, and M. Yoshimura “Picosecond high-power 355-nm UV generation in CsLiB6O10,” OSA CLEO 2016, SW4Q.1 (2016).
  21. K. Ueda, Y. Orii, Y. Takahashi, G. Okada, Y. Mori, and M. Yoshimura, “Picosecond high-power 355-nm UV generation in CsLiB6O10,” OSA ASSL 2016, AW2A.2 (2016).
  22. J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
  23. W. Koechner, Solid-State Laser Engineering, Sixth Revised and Updated Edition (Springer-Verlag, 2006), Chap. 10.
  24. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Third Revised Edition (Springer-Verlag, 1999), Chap. 2.

2015 (1)

C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).

2014 (2)

N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

2013 (1)

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

2012 (2)

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

J. Bovatsek, A. Tamhankar, and R. Patel, “UV lasers improve PCB manufacturing processes,” Laser Focus World 48(11), 48–52 (2012).

2010 (2)

R. S. Patel, A. Tamhankar, and T. Edwards, “Diode-pumped solid-state UV lasers improve LED sapphire wafer scribing,” Photon. Spectra 44(10), 46–48 (2010).

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

2009 (2)

T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

2008 (1)

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

2001 (1)

1994 (1)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).

1992 (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).

1991 (1)

J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).

Allee, E. S.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Bovatsek, J.

J. Bovatsek, A. Tamhankar, and R. Patel, “UV lasers improve PCB manufacturing processes,” Laser Focus World 48(11), 48–52 (2012).

Chen, C.

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

Chen, C. T.

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Chen, H.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Delmdahl, R.

T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).

Dudley, D. R.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Edwards, T.

R. S. Patel, A. Tamhankar, and T. Edwards, “Diode-pumped solid-state UV lasers improve LED sapphire wafer scribing,” Photon. Spectra 44(10), 46–48 (2010).

Eiro, T.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Fu, X.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Gong, M.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Gong, M. L.

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

Hay, N.

N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).

Hodgson, N.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Ito, R.

Javavel, R.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Kamimura, T.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).

Katsura, T.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Kojima, T.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Kondo, T.

Kwon, Y. K.

N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).

Liu, Q.

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Liu, S.

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

Mehl, O.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Mondry, M.

T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).

Mori, Y.

C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

I. Shoji, H. Nakamura, R. Ito, T. Kondo, M. Yoshimura, Y. Mori, and T. Sasaki, “Absolute measurement of second-order nonlinear optical coefficients of CsLiB6O10 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 18(3), 302–307 (2001).

Nakamura, H.

Nishimae, J.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Pang, H. Y.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Patel, R.

J. Bovatsek, A. Tamhankar, and R. Patel, “UV lasers improve PCB manufacturing processes,” Laser Focus World 48(11), 48–52 (2012).

Patel, R. S.

R. S. Patel, A. Tamhankar, and T. Edwards, “Diode-pumped solid-state UV lasers improve LED sapphire wafer scribing,” Photon. Spectra 44(10), 46–48 (2010).

Pei, C.

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

Pfeufer, V.

T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).

Qu, C.

C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).

Rajesh, D.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Rauch, T.

T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).

Rodin, A. M.

N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).

Sasaki, T.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

I. Shoji, H. Nakamura, R. Ito, T. Kondo, M. Yoshimura, Y. Mori, and T. Sasaki, “Absolute measurement of second-order nonlinear optical coefficients of CsLiB6O10 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 18(3), 302–307 (2001).

Shoji, I.

Slavinskis, N.

N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).

Smith, A. V.

A. V. Smith, SNLO nonlinear optics code [ http://www.as-photonics.com/snlo ].

Takahashi, Y.

C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).

Tamhankar, A.

J. Bovatsek, A. Tamhankar, and R. Patel, “UV lasers improve PCB manufacturing processes,” Laser Focus World 48(11), 48–52 (2012).

R. S. Patel, A. Tamhankar, and T. Edwards, “Diode-pumped solid-state UV lasers improve LED sapphire wafer scribing,” Photon. Spectra 44(10), 46–48 (2010).

Wang, D.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Wang, D. S.

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

Wang, G.

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

Wang, G. L.

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Wang, G. Y.

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Wang, L. R.

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Wu, Y.

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Wu, Y. C.

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Yan, X.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Yan, X. P.

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

Yasui, K.

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Yoshimura, M.

C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

I. Shoji, H. Nakamura, R. Ito, T. Kondo, M. Yoshimura, Y. Mori, and T. Sasaki, “Absolute measurement of second-order nonlinear optical coefficients of CsLiB6O10 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 18(3), 302–307 (2001).

Zhai, N.

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

Zhang, G.

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

Zhang, J. X.

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Zondy, J.

J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).

Appl. Phys. B (1)

L. R. Wang, Y. Wu, G. L. Wang, J. X. Zhang, Y. C. Wu, and C. T. Chen, “31.6-W, 355-nm generation with La2CaB10O19 crystals,” Appl. Phys. B 108(2), 307–311 (2012).

Appl. Phys. Express (1)

C. Qu, M. Yoshimura, Y. Takahashi, and Y. Mori, “Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10,” Appl. Phys. Express 8(5), 052601 (2015).

IEEE J. Quantum Electron. (2)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).

J. Opt. (1)

X. P. Yan, Q. Liu, C. Pei, D. S. Wang, and M. L. Gong, “High-power 355 nm third-harmonic generation with effective walk-off compensation of LBO,” J. Opt. 16(4), 045201 (2014).

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

J. Bovatsek, A. Tamhankar, and R. Patel, “UV lasers improve PCB manufacturing processes,” Laser Focus World 48(11), 48–52 (2012).

Laser Phys. Lett. (1)

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).

Laser Tech. J. (1)

T. Rauch, R. Delmdahl, V. Pfeufer, and M. Mondry, “Advanced UV lasers enable precision processing,” Laser Tech. J. 6(3), 20–24 (2009).

Opt. Commun. (2)

N. Zhai, S. Liu, G. Wang, G. Zhang, Y. Wu, and C. Chen, “Characterizaion of CsB3O5 crystal for high-average power third harmonic generation,” Opt. Commun. 298-299, 196–201 (2013).

J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).

Opt. Mater. (1)

D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Javavel, T. Kamimura, T. Katsura, T. Kojima, J. Nishimae, and K. Yasui, “UV laser-induced damage tolerance measurements of CsB3O5 crystals and its application for UV light generation,” Opt. Mater. 31(2), 461–463 (2008).

Photon. Spectra (1)

R. S. Patel, A. Tamhankar, and T. Edwards, “Diode-pumped solid-state UV lasers improve LED sapphire wafer scribing,” Photon. Spectra 44(10), 46–48 (2010).

Proc. SPIE (2)

N. Hay, N. Slavinskis, A. M. Rodin, and Y. K. Kwon, “>220W output power at 355 nm from a Q-switched diode-pumped solid-state laser,” Proc. SPIE 8959, 89590M (2014).

D. R. Dudley, O. Mehl, G. Y. Wang, E. S. Allee, H. Y. Pang, and N. Hodgson, “Q-switched diode pumped Nd:YAG rod laser with output power of 420W at 532nm and 160W at 355nm,” Proc. SPIE 7193, 71930Z (2009).

Other (9)

A. V. Smith, SNLO nonlinear optics code [ http://www.as-photonics.com/snlo ].

K. Ueda, M. Yoshimura, C. Qu, Y. Takahashi, and Y. Mori, “Non-collinear phase-matched 355 nm UV generation in a prism-coupled CsLiB6O10 crystal,” OSA ASSL 2015, AM2A.5 (2015).

Y. Orii, Y. Takushima, M. Yamagaki, A. Higashitani, S. Matsubara, S. Murayama, T. Manabe, I. Utsumi, D. Okuyama, and G. Okada, “High-energy 266-nm picosecond pulse generation from a narrow spectral bandwidth gain-switched LD MOPA,” Tech. Digest of CLEO 2013, JTh2A.64 (2013).

K. Ueda, Y. Orii, Y. Takahashi, G. Okada, Y. Mori, and M. Yoshimura “Picosecond high-power 355-nm UV generation in CsLiB6O10,” OSA CLEO 2016, SW4Q.1 (2016).

K. Ueda, Y. Orii, Y. Takahashi, G. Okada, Y. Mori, and M. Yoshimura, “Picosecond high-power 355-nm UV generation in CsLiB6O10,” OSA ASSL 2016, AW2A.2 (2016).

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principals and Applications (Wiley-VCH, 2012) 1st ed., Chap. 3.

W. Koechner, Solid-State Laser Engineering, Sixth Revised and Updated Edition (Springer-Verlag, 2006), Chap. 10.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Third Revised Edition (Springer-Verlag, 1999), Chap. 2.

N. Umemura, K. Yoshida, T. Kamimura, Y. Mori, T. Sasaki, and K. Kato, “New data on the phase-matching properties of CsLiB6O10,” Advanced Solid-State Lasers (OSA, Washington, D.C, OSA TOPS 26, 715–719 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 An AR coated prism-coupled device fabricated with CLBO and fused quartz. CLBO has a dimension of h × w × l = 5 × 5 × 10 mm3. CLBO is cut with θ = 49°, φ = 0°; the device is fabricated with α = 58.6°, β = 61.0° [18].
Fig. 2
Fig. 2 Experimental setup for picosecond 355-nm UV generation.
Fig. 3
Fig. 3 (a) Typical temporal profile of seed pulses measured by using a 20 GHz oscilloscope; (b) Autocorrelation trace of seed pulses.
Fig. 4
Fig. 4 (a) Spectrum of pulses through fiber amplifiers unit and ASE filter; (b) Spectrum of amplified pulses by using the first double pass NdYVO4.
Fig. 5
Fig. 5 Fundamental laser power as a function of pulse repetition rate.
Fig. 6
Fig. 6 (a) Spatial beam profile of fundamental beam at 64 W; (b) Spatial beam profile of 355-nm beam at 22 W generated in LBO.
Fig. 7
Fig. 7 Experimental THG power as a function of fundamental laser power at a repetition rate of 300 kHz with CLBO and prism-coupled CLBO. The dashed line is theoretical THG power with CLBO in the case of M = 0.36 and δ = 0.
Fig. 8
Fig. 8 Experimental THG efficiency from fundamental as a function of fundamental laser power at a repetition rate of 300 kHz with CLBO and prism-coupled CLBO. The dashed line is theoretical THG efficiency with CLBO calculated for the case M = 0.36 and δ = 0.
Fig. 9
Fig. 9 THG power as a function of repetition rate with CLBO and LBO.
Fig. 10
Fig. 10 Theoretical THG power with CLBO and LBO at 300 kHz as a function of crystal length.
Fig. 11
Fig. 11 8-h stability test of THG at 30 W with CLBO.

Tables (1)

Tables Icon

Table 1 Phase matching properties for Type II THG (1064(ω) + 532(2ω) → 355 nm(3ω))

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

l a =1.16 w 0 ρ ,
M= P 2ω P ω + P 2ω .
η 3ω = P 3ω P 0 = P ω + P 2ω P 0 η m s n 2 [ η 0 η m ,m ],
η 0 =9 M 2 (1M) 8 π 2 d eff 2 ε 0 c n ω n 2ω n 3ω λ ω 2 L 2 ( P ω + P 2ω ),
m= [ 2σ+ε ( σε ) 2 +4ε ] 2 4(1σ) ,
η m = 3 4 M[ 2σ+ε ( σε ) 2 +4ε ],
σ= 3M2 M ,
ε= 3 δ 2 (1M) η 0 ,
δ= ΔkL 2 ,

Metrics