Abstract

The efficiency improvement of luminescent solar concentrators (LSCs) necessary for practical realization is currently hindered by one major loss mechanism: reabsorption of emitted photons by the luminophores. Recently, we explored a promising technique for reducing reabsorption and also improving directional emission in LSCs utilizing stimulated emission, rather than only spontaneous emission, with an inexpensive seed laser. In this work, a model is developed to quantify the gain (i.e. the amount of amplification of a low power seed laser propagating through the solar-pumped concentrator) of stimulated-LSCs (s-LSCs) considering the effects of different important physical parameters. The net optical output power, available for a small PV cell, from the concentrator can also be determined from the model, which indicates the performance of s-LSCs. Finally, the performance of different existing material systems is investigated using literature values of the parameters required for the model, and a set of optimal parameters is suggested for practical realization of such a device.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminescent solar concentrators utilizing stimulated emission

MD Rejvi Kaysir, Simon Fleming, Rowan W. MacQueen, Timothy W. Schmidt, and Alexander Argyros
Opt. Express 24(6) A497-A505 (2016)

Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators

MD. Rejvi Kaysir, Simon Fleming, and Alexander Argyros
Appl. Opt. 57(10) 2459-2466 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators--a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [Crossref] [PubMed]
  2. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
    [Crossref]
  3. W. G. J. H. M. Sark, “Luminescent solar concentrator-a low-cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
    [Crossref]
  4. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48(2), 212–220 (2009).
    [Crossref] [PubMed]
  5. S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
    [Crossref]
  6. A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
    [Crossref] [PubMed]
  7. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
    [Crossref]
  8. S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
    [Crossref]
  9. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
    [Crossref]
  10. S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4Suppl 4), A536–A543 (2010).
    [Crossref] [PubMed]
  11. F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
    [Crossref]
  12. E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
    [Crossref]
  13. S. Asir, A. S. Demir, and H. Icil, “The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties,” Dyes Pigments 84(1), 1–13 (2010).
    [Crossref]
  14. M. R. Kaysir, S. Fleming, R. W. MacQueen, T. W. Schmidt, and A. Argyros, “Luminescent solar concentrators utilizing stimulated emission,” Opt. Express 24(6), A497–A505 (2016).
    [Crossref] [PubMed]
  15. M. R. Kaysir, S. Fleming, R. W. MacQueen, T. W. Schmidt, and A. Argyros, “Optical gain characterization of Perylene Red-doped PMMA for different pump configurations,” Appl. Opt. 55(1), 178–183 (2016).
    [Crossref] [PubMed]
  16. C. B. Roxlo and E. Yablonovitch, “Thermodynamics of daylight-pumped lasers,” Opt. Lett. 8(5), 271–273 (1983).
    [Crossref] [PubMed]
  17. T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
    [Crossref]
  18. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
    [Crossref]
  19. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
    [Crossref] [PubMed]
  20. Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
    [Crossref] [PubMed]
  21. A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
    [Crossref]
  22. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [Crossref]
  23. M. Beija, C. A. M. Afonso, and J. M. G. Martinho, “Synthesis and applications of Rhodamine derivatives as fluorescent probes,” Chem. Soc. Rev. 38(8), 2410–2433 (2009).
    [Crossref] [PubMed]
  24. T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
    [Crossref]
  25. H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
    [Crossref]
  26. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
    [Crossref]
  27. M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
    [Crossref]
  28. G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
    [Crossref]
  29. M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
    [Crossref] [PubMed]
  30. C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
    [Crossref] [PubMed]
  31. J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
    [Crossref] [PubMed]
  32. N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
    [Crossref]

2016 (3)

M. R. Kaysir, S. Fleming, R. W. MacQueen, T. W. Schmidt, and A. Argyros, “Luminescent solar concentrators utilizing stimulated emission,” Opt. Express 24(6), A497–A505 (2016).
[Crossref] [PubMed]

M. R. Kaysir, S. Fleming, R. W. MacQueen, T. W. Schmidt, and A. Argyros, “Optical gain characterization of Perylene Red-doped PMMA for different pump configurations,” Appl. Opt. 55(1), 178–183 (2016).
[Crossref] [PubMed]

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

2015 (1)

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

2014 (3)

G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
[Crossref]

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

2013 (2)

W. G. J. H. M. Sark, “Luminescent solar concentrator-a low-cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

2012 (3)

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

2011 (2)

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

2010 (2)

S. Asir, A. S. Demir, and H. Icil, “The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties,” Dyes Pigments 84(1), 1–13 (2010).
[Crossref]

S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4Suppl 4), A536–A543 (2010).
[Crossref] [PubMed]

2009 (4)

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48(2), 212–220 (2009).
[Crossref] [PubMed]

A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
[Crossref]

M. Beija, C. A. M. Afonso, and J. M. G. Martinho, “Synthesis and applications of Rhodamine derivatives as fluorescent probes,” Chem. Soc. Rev. 38(8), 2410–2433 (2009).
[Crossref] [PubMed]

M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
[Crossref]

2008 (3)

C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
[Crossref] [PubMed]

W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators--a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

2007 (2)

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

2004 (2)

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

2000 (2)

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

1998 (1)

T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
[Crossref]

1983 (1)

1982 (1)

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[Crossref]

Afonso, C. A. M.

M. Beija, C. A. M. Afonso, and J. M. G. Martinho, “Synthesis and applications of Rhodamine derivatives as fluorescent probes,” Chem. Soc. Rev. 38(8), 2410–2433 (2009).
[Crossref] [PubMed]

Alivisatos, A. P.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Andreani, L. C.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Argyros, A.

Artemyev, M.

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Asir, S.

S. Asir, A. S. Demir, and H. Icil, “The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties,” Dyes Pigments 84(1), 1–13 (2010).
[Crossref]

Bailey, S. T.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Banin, U.

M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
[Crossref]

Barnham, K.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Barnham, K. W. J.

Baseler, T. T.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Bastiaansen, C. W.

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Beane, G.

G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
[Crossref]

Beaumont, G. T.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Beija, M.

M. Beija, C. A. M. Afonso, and J. M. G. Martinho, “Synthesis and applications of Rhodamine derivatives as fluorescent probes,” Chem. Soc. Rev. 38(8), 2410–2433 (2009).
[Crossref] [PubMed]

Beljonne, D.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Bende, E. E.

Beverina, L.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Boldt, K.

G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
[Crossref]

Bose, R.

Broer, D. J.

Bronstein, N. D.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Broussard, D. R.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Büchtemann, A.

Budel, T.

Burgers, A. R.

Chatten, A. J.

Chen, B.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Chen, Z.

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Daorta, S. F.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

De Schryver, F. C.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Debaerdemaeker, T.

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

Debije, M. G.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4Suppl 4), A536–A543 (2010).
[Crossref] [PubMed]

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

Demir, A. S.

S. Asir, A. S. Demir, and H. Icil, “The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties,” Dyes Pigments 84(1), 1–13 (2010).
[Crossref]

Donegá, C. M.

Eames, P. C.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Eisler, H.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Farrell, D. J.

Ferry, V. E.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Fleming, S.

Fron, E.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Fusco, R.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Gallagher, S. J.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Giebink, N. C.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Gun’ko, Y. K.

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

Hanes, M. S.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Hardzei, M.

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Hassard, J.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Hu, Z.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Icil, H.

S. Asir, A. S. Demir, and H. Icil, “The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties,” Dyes Pigments 84(1), 1–13 (2010).
[Crossref]

Jung, J.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Kaysir, M. R.

Kazes, M.

M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
[Crossref]

Kennedy, M.

Kirkwood, N.

G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
[Crossref]

Klimov, V. I.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Kobayashi, T.

T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
[Crossref]

Koike, Y.

T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
[Crossref]

Koole, R.

Langhals, H.

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[Crossref]

Layhue, J. M.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Li, Z.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Liang, H.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Lin, C. H.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Lin, Z.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Liscidini, M.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Lokey, G. E.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Luo, Y.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Ma, W.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

MacQueen, R. W.

Malak, S. T.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Märkle, S.

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[Crossref]

Marques, J. L.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Marsal, P.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Martinho, J. M. G.

M. Beija, C. A. M. Afonso, and J. M. G. Martinho, “Synthesis and applications of Rhodamine derivatives as fluorescent probes,” Chem. Soc. Rev. 38(8), 2410–2433 (2009).
[Crossref] [PubMed]

McCormack, S. J.

McLafferty, J. B.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

McNeill, J.

C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
[Crossref] [PubMed]

Meijerink, A.

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Meyer, A.

Meyer, T.

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Ming, H.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Molinari, M.

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Mullen, K.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Mulvaney, P.

G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
[Crossref]

Nabiev, I.

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Norton, B.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Nuzzo, R. G.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

O’Brien, E.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

O’Brien, P.

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

Okamoto, Y.

T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
[Crossref]

Osswald, P.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

Powers, A. S.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Proto, A.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Purcell-Milton, F.

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

Quilitz, J.

Rademacher, A.

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[Crossref]

Reisfeld, R.

M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
[Crossref]

Richards, B. S.

Roxlo, C. B.

Ruffo, R.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Sanguineti, A.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Saraidarov, T.

M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
[Crossref]

Sark, W. G. J. H. M.

W. G. J. H. M. Sark, “Luminescent solar concentrator-a low-cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Sasaki, K.

T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
[Crossref]

Sassi, M.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Schmidt, T. W.

Schweitzer, G.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Shearer, J. D. M.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Slooff, L. H.

Sukhanova, A.

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Szymanski, C.

C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
[Crossref] [PubMed]

Thomas, E. L.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Troyon, M.

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Tsoi, S.

Tsukruk, V. V.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Turrisi, R.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Vaccaro, G.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Van der Auweraer, M.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

van Sark, W. G.

Vanmaekelbergh, D.

Vardeny, V.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Verbunt, P. P. C.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Wang, L.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wang, T.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wang, X.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wasielewski, M. R.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Wiederrecht, G. P.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Wilson, L. R.

Wittmershaus, B. P.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Wu, C.

C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
[Crossref] [PubMed]

Wu, W.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Wurthner, F.

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Würthner, F.

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

Xu, J.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Xu, L.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Yablonovitch, E.

Yao, Y.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Yoon, Y. J.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Zhai, Y.

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Zhang, J.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

Zhang, Q.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Zhang, Y.-Z.

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Zhao, H.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Zheng, Y.

C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
[Crossref] [PubMed]

Zheng, Z.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

Zou, G.

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

ACS Photonics (1)

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Adv. Energy Mater. (1)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Adv. Mater. (1)

M. Kazes, T. Saraidarov, R. Reisfeld, and U. Banin, “Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications,” Adv. Mater. 21(17), 1716–1720 (2009).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

J. Jung, C. H. Lin, Y. J. Yoon, S. T. Malak, Y. Zhai, E. L. Thomas, V. Vardeny, V. V. Tsukruk, and Z. Lin, “Crafting core/graded shell–shell quantum dots with suppressed re-absorption and tunable Stokes shift as high optical gain materials,” Angew. Chem. Int. Ed. Engl. 55(16), 5071–5075 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76(9), 1197–1199 (2000).
[Crossref]

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Chem. Ber. (1)

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[Crossref]

Chem. Commun. (Camb.) (1)

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

M. Beija, C. A. M. Afonso, and J. M. G. Martinho, “Synthesis and applications of Rhodamine derivatives as fluorescent probes,” Chem. Soc. Rev. 38(8), 2410–2433 (2009).
[Crossref] [PubMed]

ChemPhysChem (2)

Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[Crossref] [PubMed]

M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, “Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules,” ChemPhysChem 13(1), 330–335 (2012).
[Crossref] [PubMed]

Dyes Pigments (1)

S. Asir, A. S. Demir, and H. Icil, “The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties,” Dyes Pigments 84(1), 1–13 (2010).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J Phys Chem C Nanomater Interfaces 112(6), 1772–1781 (2008).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of Rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci. 93(2), 681–685 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

F. Purcell-Milton and Y. K. Gun’ko, “Quantum dots for luminescent solar concentrators,” J. Mater. Chem. 22(33), 16687–16697 (2012).
[Crossref]

J. Phys. Chem. C (1)

G. Beane, K. Boldt, N. Kirkwood, and P. Mulvaney, “Energy transfer between quantum dots and conjugated dye molecules,” J. Phys. Chem. C 118(31), 18079–18086 (2014).
[Crossref]

Nat. Photonics (2)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photochem. Photobiol. Sci. (1)

E. Fron, G. Schweitzer, P. Osswald, F. Wurthner, P. Marsal, D. Beljonne, K. Mullen, F. C. De Schryver, and M. Van der Auweraer, “Photophysical study of bay substituted perylenediimides,” Photochem. Photobiol. Sci. 7(12), 1509–1521 (2008).
[Crossref]

Proc. SPIE (1)

T. Kobayashi, K. Sasaki, Y. Koike, and Y. Okamoto, “Polymer optical fiber amplifiers for communication and sensor applications,” Proc. SPIE 3281, 84–91 (1998).
[Crossref]

Renew. Energy (1)

W. G. J. H. M. Sark, “Luminescent solar concentrator-a low-cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Science (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
[Crossref] [PubMed]

Sol. Energy (2)

T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, and Q. Zhang, “Luminescent solar concentrator employing rare earth complex with zero self-absorption loss,” Sol. Energy 85(11), 2571–2579 (2011).
[Crossref]

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang, and B. P. Wittmershaus, “Optimized excitation energy transfer in a three-dye luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 91(1), 67–75 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the solar concentrator with a seed laser configuration pumped by sunlight for the model (b) two-dimensional space grid for numerical simulation (c) schematic diagram of the s-LSC concept with two side mirrors [14].
Fig. 2
Fig. 2 The variation of output optical power PSL of the seed laser with the propagation length (L) through the concentrator with the effect of (a) pump PP (b) input signal power PS0, (here, the two dotted lines are used to show two different operating regions) (c) stimulated gain coefficient gS and (d) total signal loss αS. Here, pump loss αP is considered to be 342 m−1. Note that the reference black curve saturates with an output power of ~39 dBm at L ~20 m in each of the above figures.
Fig. 3
Fig. 3 (a) Normalized absorption and emission spectra of the PR dyes with the AM1.5 solar spectral irradiance data showing about 30% of the solar spectrum covered by the PR dyes. (b) The spectral absorption coefficient of ~0.15 mM PR-doped PMMA and spectral gain coefficient w.r.t the 695 nm seed laser wavelength. (c) The variation of the output power of the seed laser with the propagation length, where output power saturates at the propagation length of ~300 m with an output power of ~29 dBm.
Fig. 4
Fig. 4 (a) Normalized absorption and emission spectra of the Rh-B dyes, where 25% of the solar spectrum is covered by the dye absorption. (b) The spectral absorption coefficient of ~0.15 mM Rh-B doped PMMA and spectral gain coefficient w.r.t the 666 nm seed laser wavelength. (c) The variation of the output power with the propagation length, where the signal experiences loss throughout the material.
Fig. 5
Fig. 5 (a) Normalized absorption and photoluminescence spectra of the CdSe/CdS/ZnS Quantum Rods in a composite film; the absorption covers ~48% of the solar power spectrum (b) The spectral absorption coefficient of ~2 × 1015 particle per cubic centimeter in composite film and spectral gain coefficient w.r.t the 780 nm seed laser wavelength. (c) The variation of the output power with the propagation length, where the signal experiences loss throughout the material.

Tables (1)

Tables Icon

Table 1 Parameters of different luminophores used for the model and their performances.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d P P dy = α P P P ω P g S ω S A eff P P P S
d P S dx = α S P S + g S A eff P P P S
d P P1 ( λ P1 ) dy = α P1 ( λ P1 ) P P1 ( λ P1 ) ω P1 g S1 ω S A eff P P1 ( λ P1 ) P S d P P2 ( λ P2 ) dy = α P2 ( λ P2 ) P P2 ( λ P2 ) ω P2 g S2 ω S A eff P P2 ( λ P2 ) P S ............. ............. d P Pn ( λ Pn ) dy = α Pn ( λ Pn ) P Pn ( λ Pn ) ω Pn g Sn ω S A eff P Pn ( λ Pn ) P S
d P S dx = α S ( λ S ) P S + P S A eff i=1 n g Si P Pi ( λ Pi )
g S ( λ P , λ S ,C)= g S / × F l ( λ S ) F l / × α P ( λ P ,C) α P /
K Pi,1 = P Pi (x,yΔy, λ Pi )[ α Pi ( λ Pi ) ω Pi g Si ω S A eff P S (xΔx,y) ]
K S,1 = P S (xΔx,y)[ α S ( λ S )+ 1 A eff i g Si P Pi (x,yΔy, λ Pi ) ]
K Pi,2 ={ P Pi (x,yΔy, λ Pi )+ 1 2 K Pi,1 Δy }[ α Pi ( λ Pi ) ω Pi g Si ω S A eff { P S (xΔx,y)+ 1 2 K S,1 Δx } ]
K S,2 ={ P S (xΔx,y)+ 1 2 K S,1 Δx }[ α S ( λ S )+ 1 A eff i g Si { P Pi (x,yΔy, λ Pi )+ 1 2 K Pi,1 Δy } ]
K Pi,3 ={ P Pi (x,yΔy, λ Pi )+ 1 2 K Pi,2 Δy }[ α Pi ( λ Pi ) ω Pi g Si ω S A eff { P S (xΔx,y)+ 1 2 K S,2 Δx } ]
K S,3 ={ P S (xΔx,y)+ 1 2 K S,2 Δx }[ α S ( λ S )+ 1 A eff i g Si { P Pi (x,yΔy, λ Pi )+ 1 2 K Pi,2 Δy } ]
K Pi,4 ={ P Pi (x,yΔy, λ Pi )+ K Pi,3 Δy }[ α Pi ( λ Pi ) ω Pi g Si ω S A eff { P S (xΔx,y)+ K S,3 Δx } ]
K S,4 ={ P S (xΔx,y)+ K S,3 Δx }[ α S ( λ S )+ 1 A eff i g Si { P Pi (x,yΔy, λ Pi )+ K Pi,3 Δy } ]
P Pi (x,y, λ Pi )= P Pi (x,yΔy, λ Pi )+ Δy 6 [ K Pi,1 +2 K Pi,2 +2 K Pi,3 + K Pi,4 ]
P S (x,y)= P S (xΔx,y)+ Δx 6 [ K S,1 +2 K S,2 +2 K S,3 + K S,4 ]

Metrics