Abstract

High peak power laser systems are vulnerable to performance degradation due to particulate contamination on optical surfaces. In this work, we show using model contaminant particles that their optical properties decisively determine the nature of the optical damage. Borosilicate particles with low intrinsic optical absorption undergo ablation initiating in their sub-surface, leading to brittle fragmentation, distributed plasma formation, material dispersal and ultimately can lead to micro-fractures in the substrate optical surface. In contrast, energy coupling into metallic particles is highly localized near the particle-substrate interface leading to the formation of a confined plasma and subsequent etching of the substrate surface, accompanied by particle ejection driven by the recoil momentum of the ablation plume. While the tendency to create fractured surface pitting from borosilicate is stochastic, the smooth ablation pits created by metal particles is deterministic, with pit depths scaling linearly with laser fluence. A simple model is employed which predicts ~3x electric field intensity enhancement from surface-bound fragments. In addition, our results suggest that the amount of energy deposited in metal particles is at least twice that in transparent particles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase modulation and morphological evolution associated with surface-bound particle ablation

Manyalibo J. Matthews, Nan Shen, John Honig, Jeff D. Bude, and Alexander M. Rubenchik
J. Opt. Soc. Am. B 30(12) 3233-3242 (2013)

Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

Eyal Feigenbaum, Omer Malik, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 25(9) 9778-9792 (2017)

Mechanisms governing the interaction of metallic particles with nanosecond laser pulses

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Nan Shen, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(7) 7792-7815 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627–628 (1971).
  2. J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32(30), 5973–5982 (1993).
    [Crossref] [PubMed]
  3. C. C. Widmayer, D. Milam, and S. P. deSzoeke, “Nonlinear formation of holographic images of obscurations in laser beams,” Appl. Opt. 36(36), 9342–9347 (1997).
    [Crossref] [PubMed]
  4. D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
    [Crossref]
  5. J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
    [Crossref]
  6. E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
    [Crossref] [PubMed]
  7. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
    [Crossref]
  8. M. Chambonneau, M. Chanal, S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Investigations on laser damage growth in fused silica with simultaneous wavelength irradiation,” Appl. Opt. 54(6), 1463–1470 (2015).
    [Crossref] [PubMed]
  9. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
    [Crossref]
  10. A. Brown, A. Ogloza, L. Taylor, J. Thomas, and J. Talghader, “Continuous-wave laser damage and conditioning of particle contaminated optics,” Appl. Opt. 54(16), 5216–5222 (2015).
    [Crossref] [PubMed]
  11. Y. Kalisky, Handbook of Solid-State Lasers (Woodhead Publishing Ltd., 2013), Chap. 21.
  12. R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
    [Crossref]
  13. T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  14. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  15. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
    [Crossref]
  16. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
    [Crossref]
  17. E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
    [Crossref] [PubMed]
  18. R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
    [Crossref] [PubMed]
  19. S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
    [Crossref]
  20. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
    [Crossref] [PubMed]
  21. S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
    [Crossref]
  22. F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
    [Crossref]
  23. F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 987–995 (1997).
  24. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
    [Crossref] [PubMed]
  25. W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2 um sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
    [Crossref]
  26. B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
    [Crossref]
  27. M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
    [Crossref]
  28. C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
    [Crossref] [PubMed]
  29. S. R. Qiu, M. A. Norton, R. N. Raman, A. M. Rubenchik, C. D. Boley, A. Rigatti, P. B. Mirkarimi, C. J. Stolz, and M. J. Matthews, “Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 ω high-reflection mirror coatings,” Appl. Opt. 54(29), 8607–8616 (2015).
    [Crossref] [PubMed]
  30. A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
    [Crossref]
  31. Ya. B. Zel’dovich and P. Yu, Raizer, Physics of Shock Waves and High- Temperature Hydrodynamic Phenomena (Academic, 1966).
  32. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
    [Crossref]
  33. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [Crossref]
  34. J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
    [Crossref]
  35. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986)
  36. T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
    [Crossref]
  37. J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
    [Crossref]
  38. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
    [Crossref]
  39. R. N. Raman, S. Elhadj, T. A. Laurence, and M. J. Matthews, “The role of electronic defects and brittle microstructure in laser-driven material failure,” J. Phys. D Appl. Phys. 47(34), 345304 (2014).
    [Crossref]
  40. D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53(1), 322–325 (1982).
    [Crossref]

2015 (7)

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

M. Chambonneau, M. Chanal, S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Investigations on laser damage growth in fused silica with simultaneous wavelength irradiation,” Appl. Opt. 54(6), 1463–1470 (2015).
[Crossref] [PubMed]

A. Brown, A. Ogloza, L. Taylor, J. Thomas, and J. Talghader, “Continuous-wave laser damage and conditioning of particle contaminated optics,” Appl. Opt. 54(16), 5216–5222 (2015).
[Crossref] [PubMed]

E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

S. R. Qiu, M. A. Norton, R. N. Raman, A. M. Rubenchik, C. D. Boley, A. Rigatti, P. B. Mirkarimi, C. J. Stolz, and M. J. Matthews, “Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 ω high-reflection mirror coatings,” Appl. Opt. 54(29), 8607–8616 (2015).
[Crossref] [PubMed]

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

2014 (3)

2013 (3)

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
[Crossref]

2012 (2)

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

2011 (4)

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

2010 (1)

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

2009 (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

2007 (1)

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

2005 (2)

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

2004 (2)

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
[Crossref]

2003 (1)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

2001 (2)

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

2000 (1)

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

1997 (3)

C. C. Widmayer, D. Milam, and S. P. deSzoeke, “Nonlinear formation of holographic images of obscurations in laser beams,” Appl. Opt. 36(36), 9342–9347 (1997).
[Crossref] [PubMed]

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 987–995 (1997).

1993 (1)

1991 (1)

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2 um sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

1982 (1)

D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53(1), 322–325 (1982).
[Crossref]

1971 (1)

I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627–628 (1971).

Abdulla, G. M.

Adams, J. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Bass, I. L.

S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
[Crossref]

Baxamusa, S.

Becker, M. F.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

Bertussi, B.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Blin, A.

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

Boarino, L.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Boley, C. D.

Brown, A.

Brusasco, R.

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 987–995 (1997).

Bude, J.

Bude, J. D.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Canizares, A.

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

Capoulade, J.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Carr, C. W.

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

Carr, W.

Chambonneau, M.

Chanal, M.

Cross, D.

Cross, D. A.

De Leo, N.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Del Guerzo, A.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Delaporte, P.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

DeMange, P.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Demos, S. G.

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Desjardin, R.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

deSzoeke, S. P.

Donohue, E. E.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Duchateau, G.

Dutreilh-Colas, M.

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

Dylla-Spears, R.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Elhadj, S.

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

R. N. Raman, S. Elhadj, T. A. Laurence, and M. J. Matthews, “The role of electronic defects and brittle microstructure in laser-driven material failure,” J. Phys. D Appl. Phys. 47(34), 345304 (2014).
[Crossref]

S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
[Crossref]

Fargin, E.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Feigenbaum, E.

Feit, M. D.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Fersman, I. A.

I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627–628 (1971).

Fournier, J.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Furr, J.

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

Génin, F. Y.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 987–995 (1997).

Grady, D. E.

D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53(1), 322–325 (1982).
[Crossref]

Grojo, D.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Grua, P.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Guss, G. M.

S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
[Crossref]

Hackel, R. P.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Halfpenny, D. R.

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

Harris, C. D.

Hollingsworth, W. G.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Hong, M. H.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
[Crossref]

Honig, J.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Hunt, J. T.

Jarboe, J. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

Johnson, M. A.

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Jouannigot, S.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Jubera, V.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Kane, D. M.

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

Keto, J. W.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

Khazov, L. D.

I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627–628 (1971).

Kozlowski, M. R.

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 987–995 (1997).

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

Krulevitch, P.

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Lamaignère, L.

M. Chambonneau, M. Chanal, S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Investigations on laser damage growth in fused silica with simultaneous wavelength irradiation,” Appl. Opt. 54(6), 1463–1470 (2015).
[Crossref] [PubMed]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Laurence, T.

Laurence, T. A.

R. N. Raman, S. Elhadj, T. A. Laurence, and M. J. Matthews, “The role of electronic defects and brittle microstructure in laser-driven material failure,” J. Phys. D Appl. Phys. 47(34), 345304 (2014).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Laus, M.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Lee, J.

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

Liao, Z. M.

Luk’Yanchuk, B. S.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
[Crossref]

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Manes, K. R.

Mao, S. S.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

Matthews, M. J.

E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
[Crossref] [PubMed]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

S. R. Qiu, M. A. Norton, R. N. Raman, A. M. Rubenchik, C. D. Boley, A. Rigatti, P. B. Mirkarimi, C. J. Stolz, and M. J. Matthews, “Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 ω high-reflection mirror coatings,” Appl. Opt. 54(29), 8607–8616 (2015).
[Crossref] [PubMed]

R. N. Raman, S. Elhadj, T. A. Laurence, and M. J. Matthews, “The role of electronic defects and brittle microstructure in laser-driven material failure,” J. Phys. D Appl. Phys. 47(34), 345304 (2014).
[Crossref]

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
[Crossref]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

Michlitsch, K.

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

Milam, D.

Miller, P.

Miller, P. E.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Mirkarimi, P. B.

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Natoli, J. Y.

M. Chambonneau, M. Chanal, S. Reyné, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Investigations on laser damage growth in fused silica with simultaneous wavelength irradiation,” Appl. Opt. 54(6), 1463–1470 (2015).
[Crossref] [PubMed]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Neauport, J.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Negres, R. A.

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]

Nielsen, N.

Norton, M. A.

S. R. Qiu, M. A. Norton, R. N. Raman, A. M. Rubenchik, C. D. Boley, A. Rigatti, P. B. Mirkarimi, C. J. Stolz, and M. J. Matthews, “Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 ω high-reflection mirror coatings,” Appl. Opt. 54(29), 8607–8616 (2015).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

Nostrand, M. C.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Ogloza, A.

Ory, S.

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

Palmier, S.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Panzarasa, G.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Qiu, S. R.

Raffy, G.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Raman, R. N.

S. R. Qiu, M. A. Norton, R. N. Raman, A. M. Rubenchik, C. D. Boley, A. Rigatti, P. B. Mirkarimi, C. J. Stolz, and M. J. Matthews, “Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 ω high-reflection mirror coatings,” Appl. Opt. 54(29), 8607–8616 (2015).
[Crossref] [PubMed]

R. N. Raman, S. Elhadj, T. A. Laurence, and M. J. Matthews, “The role of electronic defects and brittle microstructure in laser-driven material failure,” J. Phys. D Appl. Phys. 47(34), 345304 (2014).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]

Renard, P. A.

Reyné, S.

Rigatti, A.

Rocci, R.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Rubenchik, A. M.

Rullier, J. L.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Russo, R. E.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

Salleo, A.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

Sands, T.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Servant, L.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Shen, N.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Simon, P.

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

Song, W. D.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
[Crossref]

Spaeth, M. L.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

Sparnacci, K.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Steele, R. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Steele, W.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Stolz, C. J.

Suratwala, T.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Talaga, D.

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Talghader, J.

Tam, A. C.

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2 um sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

Taylor, L.

Thomas, J.

Tovena, I.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Wang, Z. B.

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
[Crossref]

Wegner, P. J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Widmayer, C. C.

Wong, L.

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Zapka, W.

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2 um sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

Ziemlich, W.

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2 um sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B (1)

S. Elhadj, M. J. Matthews, G. M. Guss, and I. L. Bass, “Laser-based dynamic evaporation and surface shaping of fused silica with assist gases; a path to rimless laser machining,” Appl. Phys. B 113(3), 307–315 (2013).
[Crossref]

Appl. Phys. Lett. (5)

W. Zapka, W. Ziemlich, and A. C. Tam, “Efficient pulsed laser removal of 0.2 um sized particles from a solid surface,” Appl. Phys. Lett. 58(20), 2217–2219 (1991).
[Crossref]

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78(19), 2840 (2001).
[Crossref]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. I. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747–751 (2004).
[Crossref]

J. Am. Ceram. Soc. (3)

M. Dutreilh-Colas, A. Canizares, A. Blin, S. Ory, and P. Simon, “In situ Raman diagnostic of structural relaxation times of Silica Glasses,” J. Am. Ceram. Soc. 94(7), 2087–2091 (2011).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Appl. Phys. (3)

J. Lee, M. F. Becker, and J. W. Keto, “Dynamics of laser ablation of microparticles prior to nanoparticle generation,” J. Appl. Phys. 89(12), 8146–8152 (2001).
[Crossref]

D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53(1), 322–325 (1982).
[Crossref]

D. M. Kane and D. R. Halfpenny, “Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage,” J. Appl. Phys. 87(9), 4548–4552 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

R. N. Raman, S. Elhadj, T. A. Laurence, and M. J. Matthews, “The role of electronic defects and brittle microstructure in laser-driven material failure,” J. Phys. D Appl. Phys. 47(34), 345304 (2014).
[Crossref]

Nanotechnology (1)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

J. Fournier, P. Grua, J. Neauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, “Temperature dependence of luminescence for different surface flaws in high purity silica glass,” Opt. Mater. Express 3(1), 173183 (2013).
[Crossref]

Phys. Rev. B (1)

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Proc. SPIE (6)

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910 (2005).
[Crossref]

F. Y. Génin, K. Michlitsch, J. Furr, M. R. Kozlowski, and P. Krulevitch, “Laser-induced damage of fused silica at 355 and 1064 nm initiated at aluminum contamination particles on the surface,” Proc. SPIE 2966, 126–138 (1997).
[Crossref]

F. Y. Génin, M. R. Kozlowski, and R. Brusasco, “Catastrophic failure of contaminated fused silica optics at 355 nm,” Proc. SPIE 3047, 987–995 (1997).

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200 (2007).
[Crossref]

J. Honig, M. A. Norton, W. G. Hollingsworth, E. E. Donohue, and M. A. Johnson, “Experimental study of 351-nm and 527-nm laser-initiated surface damage on fused silica surfaces due to typical contaminants,” Proc. SPIE 5647, 129–135 (2005).
[Crossref]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE 5273, 325–333 (2004).
[Crossref]

Sov. J. Opt. Technol. (1)

I. A. Fersman and L. D. Khazov, “The effect of surface cleanliness of optical elements on their radiation resistance,” Sov. J. Opt. Technol. 37, 627–628 (1971).

Other (3)

Y. Kalisky, Handbook of Solid-State Lasers (Woodhead Publishing Ltd., 2013), Chap. 21.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, 1986)

Ya. B. Zel’dovich and P. Yu, Raizer, Physics of Shock Waves and High- Temperature Hydrodynamic Phenomena (Academic, 1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a-b) SEM image of initial sphere (column 1), bright-field images (columns 2-5), and depth map (column 6) showing evolution of stainless steel (SS, 1st row) and borosilicate (BS, 2nd row) spheres on laser exit surface and underlying substrate over a series of 9 J/cm2 laser shots. (c) SEM image of fractured pit left after irradiation of BS fragment (inset, optical image). (d) Bright-field image of Borofloat fragments collected onto silica.
Fig. 2
Fig. 2 (a-b) Backlit images at the location of a particular 10 µm diameter BS sphere after 1st shot (a) and 5th shot (b) at 10 J/cm2 which did not lead to fracture. (c) Depth map showing pits (dark) and deposits (light) after 5th shot.
Fig. 3
Fig. 3 (a) Maximum pit depth vs. incident fluence. (b) Maximum pit depth vs. ξ representing the ratio of the absorbed energy flux to that due to thermal dissipation (Eq. (1). (c) Line-out (scaled to sphere radius R) of typical shallow pits generated by 8 J/cm2 laser exposure of SS (solid line) and BS (dotted line) spheres.
Fig. 4
Fig. 4 (a) Fluence dependence (for 8 ± 1 µm diameter fragments) of the probability of generating fracture for sphere-derived vs. window-derived borosilicate particles (compared to laser-induced damage sites* 7-20 µm diameter after [24]), and (b) the corresponding size dependence (8 ± 0.5 J/cm2).
Fig. 5
Fig. 5 (a-b) Bright-field side-view shadowgraphy showing the dispersal of 20 µm diameter (a) SS sphere at 74 ns and (b) BS sphere at 77 ns delay after peak of 355 nm, 8 ns laser pulse. (inset in (b) shows transmission view at same delay) (c-d) Bright-field transmission-view (beam coming out of the page) shadowgraphy of the substrate surface 2 ns (c) and 77ns (d) after the peak of a subsequent laser pulse (inset in (d) shows the collection of the BS fragments prior to pulse).
Fig. 6
Fig. 6 2-D FDTD calculation of the electric field intensity enhancement of a (rightward traveling) 351 nm p-polarized laser pulse for a (a) 20 µm diameter SS sphere and (b) 100 nm thick SS film, on the exit surface of fused silica.
Fig. 7
Fig. 7 2-D FDTD calculation of the electric field intensity enhancement of a (rightward traveling) 351 nm p-polarized laser pulse for a (a) 20 µm diameter silica sphere and (b) µm-size silica shard, on the exit surface of fused silica.
Fig. 8
Fig. 8 Effect of 2-hour 900°C anneal on profile of shallow pit formed after exposing a 30 µm diam. Al sphere to a 351 nm, 9 J/cm2, 10 ns laser pulse.
Fig. 9
Fig. 9 Summary of events during laser ablation of metal and glass microparticles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ξ= Aφ 2ρH Dτ
E 0 = k ρ 0 x 5 t 2
d= [ κ IC 20 ρc ε ˙ ] 2 3

Metrics