Abstract

This study presents a blue light detector for evaluating the output light of phosphor based white LED package. It is composed of a silicon stripe-shaped photodiode designed and implemented in a 2 μm BiCMOS process which can be used for wafer level integration of different passive and active devices all in just 5 lithography steps. The final device shows a high selectivity to blue light. The maximum responsivity at 480nm is matched with the target blue LED illumination. The designed structure have better responsivity compared to simple photodiode structure due to reducing the effect of dead layer formation close to the surface because of implantation. It has also a two-fold increase in the responsivity and quantum efficiency compared to previously similar published sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Excellent color rendering indexes of multi-package white LEDs

Ji Hye Oh, Su Ji Yang, Yeon-Goog Sung, and Y. R. Do
Opt. Express 20(18) 20276-20285 (2012)

Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor

Jinn-Kong Sheu, Fu-Bang Chen, Yen-Chin Wang, Chih-Chiang Chang, Shih-Hsien Huang, Chun-Nan Liu, and Ming-Lun Lee
Opt. Express 23(7) A232-A239 (2015)

New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs

Ji Hye Oh, Jeong Rok Oh, Hoo Keun Park, Yeon-Goog Sung, and Young Rag Do
Opt. Express 19(S3) A270-A279 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
    [Crossref]
  2. Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
    [Crossref]
  3. J. Lau, R. Lee, M. Yuen, and P. Chan, “3D LED and IC wafer level packaging,” Microelectron. Int. 27(2), 98–105 (2010).
    [Crossref]
  4. E. T. A. P. Lighting, “LED lifetime in practice - The ETAP approach” [Online]. Available: http://www.etaplighting.com/uploadedFiles/Downloadable_documentation/documentatie/whitepaper_LED_EN.pdf .
  5. R. Zhang, S. W. R. Lee, D. G. Xiao, and H. Chen, “LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D Interconnection,” in Proceedings of IEEE Conference on Electronic Components and Technology (IEEE, 2011), pp. 1616–1621.
    [Crossref]
  6. C. T. Tsou and Y.-S. Huang, “Silicon-based packaging platform for light-emitting diode,” IEEE Trans. Adv. Packag. 29(3), 607–614 (2006).
    [Crossref]
  7. J. K. Kim and H. C. Lee, “A photo-sensor on thin polysilicon membrane embedded in wafer level package LED,” Proc. SPIE 8431, 8431–8437 (2012).
    [Crossref]
  8. G. Corporation, “A Silicon ultraviolet detector,” Sens. Actuators 23, 553–558 (1990).
  9. N. Kako, N. Tanaka, and C. Suzuki, “Combustion detection with a semiconductor color sensor,” Sens. Actuators 4, 655–660 (1983).
    [Crossref]
  10. A. Pauchard, P. Besse, and R. S. Popovic, “A silicon blue/UV selective stripe-shaped photodiode,” Sens. Actuators 76(1-3), 172–177 (1999).
    [Crossref]
  11. M. Zhang, H. Zhang, K. Lv, W. Chen, J. Zhou, L. Shen, and S. Ruan, “Ultraviolet photodetector with high internal gain enhanced by TiO₂/SrTiO₃ heterojunction,” Opt. Express 20(6), 5936–5941 (2012).
    [Crossref] [PubMed]
  12. J. W. Levell, M. E. Giardini, and I. D. W. Samuel, “A hybrid organic semiconductor/silicon photodiode for efficient ultraviolet photodetection,” Opt. Express 18(4), 3219–3225 (2010).
    [Crossref] [PubMed]
  13. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hal, 2000).
  14. Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.
  15. N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
    [Crossref]

2012 (2)

2011 (1)

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

2010 (2)

2006 (1)

C. T. Tsou and Y.-S. Huang, “Silicon-based packaging platform for light-emitting diode,” IEEE Trans. Adv. Packag. 29(3), 607–614 (2006).
[Crossref]

2005 (1)

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

1999 (1)

A. Pauchard, P. Besse, and R. S. Popovic, “A silicon blue/UV selective stripe-shaped photodiode,” Sens. Actuators 76(1-3), 172–177 (1999).
[Crossref]

1990 (1)

G. Corporation, “A Silicon ultraviolet detector,” Sens. Actuators 23, 553–558 (1990).

1983 (1)

N. Kako, N. Tanaka, and C. Suzuki, “Combustion detection with a semiconductor color sensor,” Sens. Actuators 4, 655–660 (1983).
[Crossref]

Besse, P.

A. Pauchard, P. Besse, and R. S. Popovic, “A silicon blue/UV selective stripe-shaped photodiode,” Sens. Actuators 76(1-3), 172–177 (1999).
[Crossref]

Briaire, J. J.

N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
[Crossref]

Chan, P.

J. Lau, R. Lee, M. Yuen, and P. Chan, “3D LED and IC wafer level packaging,” Microelectron. Int. 27(2), 98–105 (2010).
[Crossref]

Chen, H.

R. Zhang, S. W. R. Lee, D. G. Xiao, and H. Chen, “LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D Interconnection,” in Proceedings of IEEE Conference on Electronic Components and Technology (IEEE, 2011), pp. 1616–1621.
[Crossref]

Chen, W.

Chhajed, S.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

Corporation, G.

G. Corporation, “A Silicon ultraviolet detector,” Sens. Actuators 23, 553–558 (1990).

French, P. J.

N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
[Crossref]

Frijns, J. H. M.

N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
[Crossref]

Gessmann, T.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

Giardini, M. E.

He, Y.

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

Huang, Y.-S.

C. T. Tsou and Y.-S. Huang, “Silicon-based packaging platform for light-emitting diode,” IEEE Trans. Adv. Packag. 29(3), 607–614 (2006).
[Crossref]

Kako, N.

N. Kako, N. Tanaka, and C. Suzuki, “Combustion detection with a semiconductor color sensor,” Sens. Actuators 4, 655–660 (1983).
[Crossref]

Kim, J. K.

J. K. Kim and H. C. Lee, “A photo-sensor on thin polysilicon membrane embedded in wafer level package LED,” Proc. SPIE 8431, 8431–8437 (2012).
[Crossref]

Kolahdouz, M.

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

Kolahdouz Esfahani, Z.

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

Lau, J.

J. Lau, R. Lee, M. Yuen, and P. Chan, “3D LED and IC wafer level packaging,” Microelectron. Int. 27(2), 98–105 (2010).
[Crossref]

Lawand, N. S.

N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
[Crossref]

Lee, H. C.

J. K. Kim and H. C. Lee, “A photo-sensor on thin polysilicon membrane embedded in wafer level package LED,” Proc. SPIE 8431, 8431–8437 (2012).
[Crossref]

Lee, R.

J. Lau, R. Lee, M. Yuen, and P. Chan, “3D LED and IC wafer level packaging,” Microelectron. Int. 27(2), 98–105 (2010).
[Crossref]

Lee, S. W. R.

R. Zhang, S. W. R. Lee, D. G. Xiao, and H. Chen, “LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D Interconnection,” in Proceedings of IEEE Conference on Electronic Components and Technology (IEEE, 2011), pp. 1616–1621.
[Crossref]

Levell, J. W.

Li, Y.-L.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

Lin, Y.-C.

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

Lv, K.

Ma, T.

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

Pauchard, A.

A. Pauchard, P. Besse, and R. S. Popovic, “A silicon blue/UV selective stripe-shaped photodiode,” Sens. Actuators 76(1-3), 172–177 (1999).
[Crossref]

Popovic, R. S.

A. Pauchard, P. Besse, and R. S. Popovic, “A silicon blue/UV selective stripe-shaped photodiode,” Sens. Actuators 76(1-3), 172–177 (1999).
[Crossref]

Rostamian, A.

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

Ruan, S.

Samuel, I. D. W.

Schubert, E. F.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

Shen, L.

Shi, F. G.

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

Suzuki, C.

N. Kako, N. Tanaka, and C. Suzuki, “Combustion detection with a semiconductor color sensor,” Sens. Actuators 4, 655–660 (1983).
[Crossref]

Tanaka, N.

N. Kako, N. Tanaka, and C. Suzuki, “Combustion detection with a semiconductor color sensor,” Sens. Actuators 4, 655–660 (1983).
[Crossref]

Tran, N. T.

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

Tsou, C. T.

C. T. Tsou and Y.-S. Huang, “Silicon-based packaging platform for light-emitting diode,” IEEE Trans. Adv. Packag. 29(3), 607–614 (2006).
[Crossref]

Van Zeijl, H.

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
[Crossref]

Xi, Y.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

Xiao, D. G.

R. Zhang, S. W. R. Lee, D. G. Xiao, and H. Chen, “LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D Interconnection,” in Proceedings of IEEE Conference on Electronic Components and Technology (IEEE, 2011), pp. 1616–1621.
[Crossref]

You, J. P.

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

Yuen, M.

J. Lau, R. Lee, M. Yuen, and P. Chan, “3D LED and IC wafer level packaging,” Microelectron. Int. 27(2), 98–105 (2010).
[Crossref]

Zhang, G. Q.

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

Zhang, H.

Zhang, M.

Zhang, R.

R. Zhang, S. W. R. Lee, D. G. Xiao, and H. Chen, “LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D Interconnection,” in Proceedings of IEEE Conference on Electronic Components and Technology (IEEE, 2011), pp. 1616–1621.
[Crossref]

Zhou, J.

IEEE Trans. Adv. Packag. (1)

C. T. Tsou and Y.-S. Huang, “Silicon-based packaging platform for light-emitting diode,” IEEE Trans. Adv. Packag. 29(3), 607–614 (2006).
[Crossref]

J. Appl. Phys. (1)

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[Crossref]

J. Electron. Packag. (1)

Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration,” J. Electron. Packag. 133(1), 011009 (2011).
[Crossref]

Microelectron. Int. (1)

J. Lau, R. Lee, M. Yuen, and P. Chan, “3D LED and IC wafer level packaging,” Microelectron. Int. 27(2), 98–105 (2010).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

J. K. Kim and H. C. Lee, “A photo-sensor on thin polysilicon membrane embedded in wafer level package LED,” Proc. SPIE 8431, 8431–8437 (2012).
[Crossref]

Sens. Actuators (3)

G. Corporation, “A Silicon ultraviolet detector,” Sens. Actuators 23, 553–558 (1990).

N. Kako, N. Tanaka, and C. Suzuki, “Combustion detection with a semiconductor color sensor,” Sens. Actuators 4, 655–660 (1983).
[Crossref]

A. Pauchard, P. Besse, and R. S. Popovic, “A silicon blue/UV selective stripe-shaped photodiode,” Sens. Actuators 76(1-3), 172–177 (1999).
[Crossref]

Other (5)

E. T. A. P. Lighting, “LED lifetime in practice - The ETAP approach” [Online]. Available: http://www.etaplighting.com/uploadedFiles/Downloadable_documentation/documentatie/whitepaper_LED_EN.pdf .

R. Zhang, S. W. R. Lee, D. G. Xiao, and H. Chen, “LED packaging using silicon substrate with cavities for phosphor printing and copper-filled TSVs for 3D Interconnection,” in Proceedings of IEEE Conference on Electronic Components and Technology (IEEE, 2011), pp. 1616–1621.
[Crossref]

J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hal, 2000).

Z. Kolahdouz Esfahani, A. Rostamian, M. Kolahdouz, T. Ma, H. Van Zeijl, and G. Q. Zhang, “Blue selective photodiodes for optical feedback in LED wafer level packages,” in Proceedings of IEEE Conference on Solid State Device Research-ESSDERC (IEEE, 2014), pp. 174–177.

N. S. Lawand, H. van Zeijl, P. J. French, J. J. Briaire, and J. H. M. Frijns, “Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants,” in Proceedings of IEEE Conference on Sensors (IEEE, 2013), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 LED performance report over operating hours from ETAP company [4].
Fig. 2
Fig. 2 (a) Electrical field for 470 and 710 nm; and (b) carrier generation rate as a function of depth for 470nm light in silicon interface. Si interface is occurring at 0μm for these plots.
Fig. 3
Fig. 3 Schematic of (a) a multi-stripe and (b) single anode photodiode and the equivalent circuit.
Fig. 4
Fig. 4 Electron concentration in the N+ region of the photodiode structure at 0 V bias condition.
Fig. 5
Fig. 5 Electric potential calculated from the vacuum level on a P + stripe to show where in the depletion region generation occurs.
Fig. 6
Fig. 6 (a) I-V simulation results of the single- and multi-stripe structures w/o 470nm radiation and (b) the resulted current vs. wavelength for the single- and multi-stripe structures.
Fig. 7
Fig. 7 Silicon wafer price for different number of masks used in IC processing.
Fig. 8
Fig. 8 Process overview of the core mask steps and oxidation process in the BICMOS5 process.
Fig. 9
Fig. 9 ECVS profile of shallow P+ region implanted in the N-well. The P+-N junction is formed at 330 nm where the doping profile is first crossing N-well doping level.
Fig. 10
Fig. 10 Responsivity vs. wavelength for multi- and single-stripe shaped photodiodes.
Fig. 11
Fig. 11 PN juctions and die structure for Bridgelux blue power LED die.
Fig. 12
Fig. 12 Photodiodes in LED package. For each LED two sets of photodiodes were used to perform output light measurement.
Fig. 13
Fig. 13 (a) Photodiode output IV curve at different LED driving current. (b) Relative luminous intensity vs. LED forward current comparing the photodiode performance with the datasheet amounts.
Fig. 14
Fig. 14 (a) Photodiode IV characteristics over 120 min LED light exposure. (b) Normalized readout light intensity in LED working period of 2 hours.
Fig. 15
Fig. 15 Measured responsivity vs wavelength for the multi-stripe photodiode. The spectral response of a published and commercially available UV-enhanced photodiode is also added for comparison.

Tables (2)

Tables Icon

Table 1 Process Overview

Tables Icon

Table 2 Specification of Target Led

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G= P op y × 1 hf

Metrics