Abstract

A novel relative humidity (RH) sensing network based on ultra-weak fiber Bragg gratings (FBGs) is proposed and demonstrated. Experiment is demonstrated on a 5 serial ultra-weak FBGs sensing network chopped from a fiber array with 1124 FBGs. Experimental results show that the corresponding RH sensitivity varies from 1.134 to 1.832 pm/%RH when ambient environmental RH changes from 23.8%RH to 83.4%RH. The low-reflectance FBGs and time-division multiplexing (TDM) technology makes it possible to multiplex thousands of RH sensors in single optical fiber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings

Zhihui Luo, Hongqiao Wen, Huiyong Guo, and Minghong Yang
Opt. Express 21(19) 22799-22807 (2013)

TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers

Jalal Rohollahnejad, Li Xia, Rui Cheng, Yanli Ran, Udaya Rahubadde, Jiaao Zhou, and Lin Zhu
Opt. Express 25(2) 670-680 (2017)

Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring

Yiyang Luo, Li Xia, Zhilin Xu, Can Yu, Qizhen Sun, Wei Li, Di Huang, and Deming Liu
Opt. Express 23(3) 2416-2423 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fiber-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement 46(10), 4052–4074 (2013).
    [Crossref]
  2. Z. Zhao and Y. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B Chem. 160(1), 1340–1345 (2011).
    [Crossref]
  3. K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
    [Crossref]
  4. X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
    [Crossref] [PubMed]
  5. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
    [Crossref]
  6. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
    [Crossref]
  7. J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
    [Crossref]
  8. W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
    [Crossref]
  9. L. Alwis, T. Sun, and K. V. Grattan, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor,” IEEE Sens. J. 13(2), 767–771 (2013).
    [Crossref]
  10. C. Y. Hu, H. Q. Wen, and W. Bai, “A Novel Interrogation System for Large Scale Sensing Network With Identical Ultra-Weak Fiber Bragg Gratings,” J. Lightwave Technol. 32(7), 1406–1411 (2014).
    [Crossref]
  11. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
    [Crossref]
  12. Y. J. Zhang, X. P. Xie, and H. B. Xu, “Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR,” J. Opt. Electron. Eng 39(8), 69–74 (2012).
  13. H. Y. Guo, J. G. Tang, X. F. Li, Y. Zheng, H. Yu, and H. H. Yu, “On-line writing weak fiber Bragg gratings array,” Chin. Opt. Lett. 11(3), 030602 (2013).
    [Crossref]

2014 (2)

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

C. Y. Hu, H. Q. Wen, and W. Bai, “A Novel Interrogation System for Large Scale Sensing Network With Identical Ultra-Weak Fiber Bragg Gratings,” J. Lightwave Technol. 32(7), 1406–1411 (2014).
[Crossref]

2013 (4)

H. Y. Guo, J. G. Tang, X. F. Li, Y. Zheng, H. Yu, and H. H. Yu, “On-line writing weak fiber Bragg gratings array,” Chin. Opt. Lett. 11(3), 030602 (2013).
[Crossref]

L. Alwis, T. Sun, and K. V. Grattan, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor,” IEEE Sens. J. 13(2), 767–771 (2013).
[Crossref]

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fiber-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

2012 (1)

Y. J. Zhang, X. P. Xie, and H. B. Xu, “Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR,” J. Opt. Electron. Eng 39(8), 69–74 (2012).

2011 (2)

Z. Zhao and Y. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B Chem. 160(1), 1340–1345 (2011).
[Crossref]

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

2009 (1)

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
[Crossref]

2008 (1)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

2007 (1)

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[Crossref]

2005 (1)

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Alwis, L.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fiber-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

L. Alwis, T. Sun, and K. V. Grattan, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor,” IEEE Sens. J. 13(2), 767–771 (2013).
[Crossref]

Bai, W.

Cen, K. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[Crossref]

Chan, C. C.

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

Cheng, Y.

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Deng, D.

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Dong, X.

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

Duan, Y.

Z. Zhao and Y. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B Chem. 160(1), 1340–1345 (2011).
[Crossref]

Grattan, K. T. V.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fiber-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Grattan, K. V.

L. Alwis, T. Sun, and K. V. Grattan, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor,” IEEE Sens. J. 13(2), 767–771 (2013).
[Crossref]

Guo, H. Y.

Hou, X.

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Hu, C. Y.

Hu, J.

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Huang, X. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[Crossref]

Jiang, X.

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Khijwania, S. K.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
[Crossref]

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Li, D.

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Li, T.

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

Li, X. F.

Li, Y.

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

Liu, Y.

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Philip, T.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
[Crossref]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Sheng, D. R.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[Crossref]

Singh, J. P.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
[Crossref]

Sreenivasan, K. L.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
[Crossref]

Sun, T.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fiber-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

L. Alwis, T. Sun, and K. V. Grattan, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor,” IEEE Sens. J. 13(2), 767–771 (2013).
[Crossref]

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Tang, J. G.

Venugopalan, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Wen, H. Q.

Wu, P.

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Xie, W.

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Xie, X. P.

Y. J. Zhang, X. P. Xie, and H. B. Xu, “Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR,” J. Opt. Electron. Eng 39(8), 69–74 (2012).

Xu, H. B.

Y. J. Zhang, X. P. Xie, and H. B. Xu, “Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR,” J. Opt. Electron. Eng 39(8), 69–74 (2012).

Yang, M.

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Yeo, T. L.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Yi, L.

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Yu, H.

Yu, H. H.

Zhang, Y.

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Zhang, Y. J.

Y. J. Zhang, X. P. Xie, and H. B. Xu, “Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR,” J. Opt. Electron. Eng 39(8), 69–74 (2012).

Zhao, C. L.

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao and Y. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B Chem. 160(1), 1340–1345 (2011).
[Crossref]

Zheng, Y.

Zhou, H.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[Crossref]

Zhuang, Z.

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Sens. J. (1)

L. Alwis, T. Sun, and K. V. Grattan, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor,” IEEE Sens. J. 13(2), 767–771 (2013).
[Crossref]

J. Biomed. Opt. (1)

X. Dong, T. Li, Y. Liu, Y. Li, C. L. Zhao, and C. C. Chan, “Polyvinyl alcohol-coated hybrid fiber grating for relative humidity sensing,” J. Biomed. Opt. 16(7), 077001 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Electron. Eng (1)

Y. J. Zhang, X. P. Xie, and H. B. Xu, “Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR,” J. Opt. Electron. Eng 39(8), 69–74 (2012).

Measurement (1)

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical fiber-based sensor technology for humidity and moisture measurement: review of recent progress,” Measurement 46(10), 4052–4074 (2013).
[Crossref]

Microchem. J. (1)

J. Hu, P. Wu, D. Deng, X. Jiang, X. Hou, and L. Yi, “An optical humidity sensor based on CdTe nanocrystals modified porous silicon,” Microchem. J. 108, 100–105 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51(3), 641–645 (2009).
[Crossref]

Opt. Fiber Technol. (1)

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, and Z. Zhuang, “Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face,” Opt. Fiber Technol. 20(4), 314–319 (2014).
[Crossref]

Sens. Actuators A Phys. (1)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators A Phys. 148(1), 57–62 (2008).
[Crossref]

Sens. Actuators B Chem. (3)

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating,” Sens. Actuators B Chem. 127(2), 518–524 (2007).
[Crossref]

Z. Zhao and Y. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B Chem. 160(1), 1340–1345 (2011).
[Crossref]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B Chem. 110(1), 148–156 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Dip-coating method for polyimide film on FBG fiber chain.
Fig. 2
Fig. 2 Profile of five FBG sensors coated with polyimide film of different thickness.
Fig. 3
Fig. 3 Experimental set-up of the RH measuring system.
Fig. 4
Fig. 4 Spectra overlap of five RH sensors with different humidity.
Fig. 5
Fig. 5 Spectra of five RH sensors at the RH level of 83.4%.
Fig. 6
Fig. 6 Spectra of FBG2 at 23.8%RH and the others at 83.4% RH.
Fig. 7
Fig. 7 Measurement results of the five sensors at different RH.
Fig. 8
Fig. 8 The RH sensitivity values of sensors vs. different Coating thickness.

Tables (1)

Tables Icon

Table 1 Humidity Values Above the Air of Each Saturated Salt Solution at 28.5°C

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λ B = n eff Λ
Δ λ B λ B =( 1 P e )ε+( α T +ξ )ΔT
ε= ε T + ε RH
ε T =( α RH α T )ΔT
ε RH =βΔRH
Δ λ B λ B =( 1 P e )βΔRH+[ α RH ( α RH α T ) P e +ξ ]ΔT
τ i = 2n L i c
P ref , i ( λ B )= ( 1α( λ B ) ) 2( i1 ) α( λ B ) P 0 ( λ B )
f( λ i )=Aexp( ( λ i B ) 2 c 2 2 )

Metrics