Abstract

We present the electrical and optical characterization and theoretical modeling of the transient behavior of regular 4.5-μm single-mode emitting distributed feedback (DFB) quantum cascade lasers (QCLs). Low residual capacitance together with a high-frequency optimized three-terminal coplanar waveguide configuration leads to modulation frequencies up to 23.5 GHz (optical) and 26.5 GHz (electrical), respectively. A maximum 3-dB cut-off value of 6.6 GHz in a microwave rectification scheme is obtained, with a significant increase in electrical modulation bandwidth when increasing the DC-current for the entire current range of the devices. Optical measurements by means of FTIR-spectroscopy and a heterodyne beating experiment reveal the presence of a resonance peak, due to coupling of the lasing DFB- with its neighboring below-threshold Fabry-Pérot-(FP-)mode, when modulating around the cavity roundtrip frequency. This resonance is modeled by a 2-mode Maxwell-Bloch formalism. It enhances only one sideband and consequently leads to the first experimental observation of the single-sideband regime in such kind of devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers

Borislav Hinkov, Jakob Hayden, Rolf Szedlak, Pedro Martin-Mateos, Borja Jerez, Pablo Acedo, Gottfried Strasser, and Bernhard Lendl
Opt. Express 27(10) 14716-14724 (2019)

Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers

J. Teissier, S. Laurent, C. Manquest, C. Sirtori, A. Bousseksou, J. R. Coudevylle, R. Colombelli, G. Beaudoin, and I. Sagnes
Opt. Express 20(2) 1172-1183 (2012)

Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation

Pierre Gellie, Stefano Barbieri, Jean-François Lampin, Pascal Filloux, Christophe Manquest, Carlo Sirtori, Isabelle Sagnes, Suraj P. Khanna, Edmund H. Linfield, A. Giles Davies, Harvey Beere, and David Ritchie
Opt. Express 18(20) 20799-20816 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
    [Crossref]
  3. S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
    [Crossref]
  4. O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.
  5. S. Kalchmair, R. Blanchard, T. S. Mansuripur, G.-M. de Naurois, C. Pfluegl, M. F. Witinski, L. Diehl, F. Capasso, and M. Loncar, “High tuning stability of sampled grating quantum cascade lasers,” Opt. Express 23, 15734 (2015).
    [Crossref] [PubMed]
  6. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref] [PubMed]
  7. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  8. M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
    [Crossref]
  9. D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
    [Crossref]
  10. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
    [Crossref]
  11. A. Yariv, Quantum Electronics (Wiley, 1989), Chap. 20.
  12. G. Wysocki and D. Weidmann, “Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser,” Opt. Express 18, 26123–26140 (2010).
    [Crossref] [PubMed]
  13. A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser,” Appl. Phys. Lett. 103, 191107 (2013).
    [Crossref]
  14. S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
    [Crossref]
  15. R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
    [Crossref]
  16. M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
    [Crossref]
  17. Y. Wang and A. Belyanin, “Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time,” Opt. Express 23, 4173 (2015).
    [Crossref] [PubMed]
  18. R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
    [Crossref]
  19. A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
    [Crossref]
  20. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
    [Crossref]
  21. A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser,” Opt. Express 22, 23439 (2014).
    [Crossref] [PubMed]
  22. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
    [Crossref]
  23. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
    [Crossref]
  24. W. K. Chen, “The Electrical Engineering Handbook,” (Academic, 2004), p. 1018.
  25. L. Cao, A.-S. Grimault-Jacquin, and F. Aniel, “Comparison and optimization of dispersion, and losses of planar waveguides on benzocyclobutene (Bcb) at Thz frequencies: coplanar waveguide (Cpw), microstrip, stripline and slotline,” Prog. Electromagn. Res. B 56, 161–183 (2013).
    [Crossref]
  26. “ http://www.cascademicrotech.com/files/ZProbe40_SS_0310b.pdf .”
  27. H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
    [Crossref]
  28. J. Faist, Quantum Cascade Lasers (Oxford University, 2013), Chap. 13.
    [Crossref]
  29. S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
    [Crossref]
  30. J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
    [Crossref]
  31. G. Villares and J. Faist, “Quantum cascade laser combs: effects of modulation and dispersion,” Opt. Express 23, 1651 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (6)

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser,” Opt. Express 22, 23439 (2014).
[Crossref] [PubMed]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
[Crossref]

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

2013 (4)

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser,” Appl. Phys. Lett. 103, 191107 (2013).
[Crossref]

L. Cao, A.-S. Grimault-Jacquin, and F. Aniel, “Comparison and optimization of dispersion, and losses of planar waveguides on benzocyclobutene (Bcb) at Thz frequencies: coplanar waveguide (Cpw), microstrip, stripline and slotline,” Prog. Electromagn. Res. B 56, 161–183 (2013).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

2012 (2)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

2011 (1)

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
[Crossref]

2010 (2)

2007 (1)

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

2006 (1)

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

2002 (1)

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

2001 (2)

S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

1999 (1)

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

1996 (1)

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Aellen, T.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

Alton, J.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Amanti, M. I.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Ambacher, O.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Aniel, F.

L. Cao, A.-S. Grimault-Jacquin, and F. Aniel, “Comparison and optimization of dispersion, and losses of planar waveguides on benzocyclobutene (Bcb) at Thz frequencies: coplanar waveguide (Cpw), microstrip, stripline and slotline,” Prog. Electromagn. Res. B 56, 161–183 (2013).
[Crossref]

Baillargeon, J. N.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Barbieri, S.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Beck, M.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
[Crossref]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
[Crossref]

S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
[Crossref]

Beere, H. E.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Belyanin, A.

Bernard, A.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

Bethea, C.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

Bismuto, A.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
[Crossref]

Blanchard, R.

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
[Crossref]

Bleh, D.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Bonetti, Y.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

Breuil, N.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Buchanan, M.

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
[Crossref]

Burghoff, D.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Cai, X.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Calvar, A.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Cao, L.

L. Cao, A.-S. Grimault-Jacquin, and F. Aniel, “Comparison and optimization of dispersion, and losses of planar waveguides on benzocyclobutene (Bcb) at Thz frequencies: coplanar waveguide (Cpw), microstrip, stripline and slotline,” Prog. Electromagn. Res. B 56, 161–183 (2013).
[Crossref]

Capasso, F.

S. Kalchmair, R. Blanchard, T. S. Mansuripur, G.-M. de Naurois, C. Pfluegl, M. F. Witinski, L. Diehl, F. Capasso, and M. Loncar, “High tuning stability of sampled grating quantum cascade lasers,” Opt. Express 23, 15734 (2015).
[Crossref] [PubMed]

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Chan, C. W. I.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Chen, W. K.

W. K. Chen, “The Electrical Engineering Handbook,” (Academic, 2004), p. 1018.

Cho, A.

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

Cho, A. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

de Naurois, G.-M.

Dhillon, S. S.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Diehl, L.

Dikmelik, Y.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

Faist, J.

G. Villares and J. Faist, “Quantum cascade laser combs: effects of modulation and dispersion,” Opt. Express 23, 1651 (2015).
[Crossref] [PubMed]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
[Crossref]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
[Crossref]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

J. Faist, Quantum Cascade Lasers (Oxford University, 2013), Chap. 13.
[Crossref]

Gao, J.-R.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Gini, E.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Giovannini, M.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

Gmachl, C.

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

Gmalch, C.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Grahmann, J.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Grimault-Jacquin, A.-S.

L. Cao, A.-S. Grimault-Jacquin, and F. Aniel, “Comparison and optimization of dispersion, and losses of planar waveguides on benzocyclobutene (Bcb) at Thz frequencies: coplanar waveguide (Cpw), microstrip, stripline and slotline,” Prog. Electromagn. Res. B 56, 161–183 (2013).
[Crossref]

Han, N.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Hangauer, A.

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser,” Opt. Express 22, 23439 (2014).
[Crossref] [PubMed]

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser,” Appl. Phys. Lett. 103, 191107 (2013).
[Crossref]

Hayton, D. J.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Hinkov, B.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

Hofstetter, D.

S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
[Crossref]

Hoyler, N.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

Hu, Q.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Hugger, S.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

Hutchinson, A.

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Hvozdara, L.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

Hwang, H. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Kalchmair, S.

Kao, T.-Y.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

Li, J.

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
[Crossref]

Liu, H. C.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
[Crossref]

Loncar, M.

Maineult, W.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Mansuripur, T. S.

Martini, R.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

Merten, A.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Nikodem, M.

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser,” Opt. Express 22, 23439 (2014).
[Crossref] [PubMed]

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser,” Appl. Phys. Lett. 103, 191107 (2013).
[Crossref]

Ostendorf, R.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Paiella, R.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

Pfluegl, C.

Renaudat St-Jean, M.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

Reno, J. L.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Riedi, S.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

Ritchie, D. a.

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

Rösch, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
[Crossref]

Scalari, G.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
[Crossref]

Schmidt, R.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Sirtori, C.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D.

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

Sivco, D. L.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Spinner, G.

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser,” Opt. Express 22, 23439 (2014).
[Crossref] [PubMed]

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser,” Appl. Phys. Lett. 103, 191107 (2013).
[Crossref]

St-Jean, M. R.

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

Terazzi, R.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
[Crossref]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

Villares, G.

G. Villares and J. Faist, “Quantum cascade laser combs: effects of modulation and dispersion,” Opt. Express 23, 1651 (2015).
[Crossref] [PubMed]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Wagner, J.

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

Wang, Y.

Wasilewski, Z. R.

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
[Crossref]

Weidmann, D.

Whittaker, E. A.

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

Witinski, M. F.

Wysocki, G.

Yang, Y.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1989), Chap. 20.

Appl. Phys. Lett. (9)

S. Riedi, A. Hugi, A. Bismuto, M. Beck, and J. Faist, “Broadband external cavity tuning in the 3–4 μm window,” Appl. Phys. Lett. 103, 031108 (2013).
[Crossref]

R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett. 79, 2526–2528 (2001).
[Crossref]

A. Hangauer, G. Spinner, M. Nikodem, and G. Wysocki, “Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser,” Appl. Phys. Lett. 103, 191107 (2013).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, C. Bethea, D. Sivco, A. Hutchinson, and A. Cho, “High-speed operation of gain-switched mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 75, 2536 (1999).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 1–4 (2013).
[Crossref]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89, 9–11 (2006).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers,” Appl. Phys. Lett. 98, 3–5 (2011).
[Crossref]

S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. a. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett. 91, 2007–2009 (2007).
[Crossref]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

Electron. Lett. (3)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electron. Lett. 48, 646 (2012).
[Crossref]

S. Blaser, D. Hofstetter, M. Beck, and J. Faist, “Free-space optical data link using Peltier-cooled quantum cascade laser,” Electron. Lett. 37, 778 (2001).
[Crossref]

R. Martini, C. Bethea, F. Capasso, C. Gmalch, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron. 32, 1024–1028 (1996).
[Crossref]

Laser Photonics Rev. (1)

M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, H. C. Liu, and C. Sirtori, “Injection locking of mid-infrared quantum cascade laser at 14 GHz, by direct microwave modulation,” Laser Photonics Rev. 8, 443–449 (2014).
[Crossref]

Nat. Commun. (1)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9, 42 (2014).
[Crossref]

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Prog. Electromagn. Res. B (1)

L. Cao, A.-S. Grimault-Jacquin, and F. Aniel, “Comparison and optimization of dispersion, and losses of planar waveguides on benzocyclobutene (Bcb) at Thz frequencies: coplanar waveguide (Cpw), microstrip, stripline and slotline,” Prog. Electromagn. Res. B 56, 161–183 (2013).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[Crossref]

Other (5)

O. Ambacher, R. Ostendorf, D. Bleh, A. Merten, J. Grahmann, R. Schmidt, S. Hugger, and J. Wagner, “Combining external cavity quantum cascade lasers and MOEMS technology: an approach for miniaturization and fast wavelength scanning,” in Proc. of the Int. Conf. on MEMS and Nanophotonics (2014), pp. 91–92.

A. Yariv, Quantum Electronics (Wiley, 1989), Chap. 20.

“ http://www.cascademicrotech.com/files/ZProbe40_SS_0310b.pdf .”

W. K. Chen, “The Electrical Engineering Handbook,” (Academic, 2004), p. 1018.

J. Faist, Quantum Cascade Lasers (Oxford University, 2013), Chap. 13.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Front-view sketch of a typical CPW-BH-QCL. (b) Top-view of a processed device. (c) Three-terminal current-injection probe (z-probe [26]) for RF-frequencies up to 40 GHz.
Fig. 2
Fig. 2 Experimental setup for RF-current-injection including a 26.5-GHz bias-T which combines DC- (current-source) and RF-current and injects it through a 50 Ω line (RL) into the DFB-QCL (ZQCL). In case of the electrical (rectification) measurement, which is described in the main text and in [27], a lock-in amplifier is added as shown.
Fig. 3
Fig. 3 (a) Electrical potential along one AR-period at an applied external field of 40 kV/cm calculated by the self-consistent Schrödinger Poisson solver. Approximate location of negative and positive charges are indicated as well as the dipole LS. (b) Capacitance versus DC-current for the calculated AR-model (red) and the fitted rectification model (black). Threshold-current Ith and the rollover current Irollover of the structure are indicated.
Fig. 4
Fig. 4 (a) Normalized electrical rectification data of a typical 3 μm × 2 mm device (+HR-coating) at different bias-currents between IDC = 42 mA (below lasing threshold Ith = 320 mA) and 632 mA (= Imax). The roll-off is −18.6 dB/decade at IDC = 42 mA. (b) Normalized electrical rectification signals at 42 mA and 632 mA (dots) fit by the Vrect-model (dashed lines) with very good agreement between simulation and experiment.
Fig. 5
Fig. 5 Experimental setup for: (a) FTIR- and (b) heterodyne-experiment.
Fig. 6
Fig. 6 (a) Electroluminescence of the 4 μm × 1 mm device with a 2.14 cm−1 wide stopband on the high-energy side of the DFB-mode. The next lower-energy mode is spaced by ∼40 GHz. (b) Electroluminescence of the 3 μm × 2 mm device (stopband-width: 1.87 cm−1, high-energy side of lasing DFB-mode). The next lower-energy mode is spaced by about 20 GHz. (c) Comparison of the measured relative sideband-intensity (FTIR: green (open symbols), Heterodyne: blue (filled symbols); −1st order: diamonds, +1st order: squares), i.e. normalized to the respective carrier-signal, with the simulated curve of the −1st order sideband in red for the 4 μm × 1 mm device. (d) Comparison of the measured relative sideband-intensity, with the simulated curve of the −1st order sideband (red) for the 3 μm × 2 mm device. A strong resonance in the −1st order is observed around 15 GHz.
Fig. 7
Fig. 7 FTIR-spectra of the 3 μm × 2 mm device for RF-modulation frequencies between 15 GHz and 21 GHz and a DC-current of 632 mA. The SSB-regime can clearly be observed where no +1st order sideband is observed for this particular device and driving-conditions.
Fig. 8
Fig. 8 (a)–(d) One QCL active-region period (AR- and injector-part) for different conditions of self-consistent (ESC) and external field (Fext): (a) Esc = Fext = 0, (b) Esc ≠0, Fext = 0, (c) Esc = 0, Fext ≠ 0, (d) Esc = Fext ≠ 0. (e) First active-region period after the ohmic contact: (top) band diagram, (middle) net charge distribution and (bottom) electrical potential, as function of geometrical position.
Fig. 9
Fig. 9 VI- (left-hand scale, black) and 2nd derivative of the VI-curve (right-hand scale, red) of a typical BH-QCL (plot in the investigated range between 42 mA and 632 mA).
Fig. 10
Fig. 10 (a) Thévenin equivalent circuit for a perfect voltage source. (b) Equivalent electrical driving circuit including all components and their labeling.

Tables (2)

Tables Icon

Table 1 Parameters for the rectification measurement fits in Fig. 4(b) for the 3 μm × 2 mm at 42 mA and 632 mA.

Tables Icon

Table 2 Parameters for simulating Fresp,tot(ν) (3 μm × 2 mm and the 4 μm × 1 mm device).

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

V rect = 2 | V | P RF R L R QCL 1 ( R L + R QCL ) 2 ( 1 + ( ω R QCL C QCL ) 2 1 + ( ω R ¯ C QCL ) 2 ) R QCL 2 1 + ( ω R QCL C QCL ) 2
m ( ν ) = 4 ( g 0 n ) 2 δ * 2 κ 0 , 1 2 | A 1 | 2 1 δ 2 ( 1 + 16 τ p 2 π 2 ( ν 2 ν 0 2 ν ) 2 δ 2 ) 2 1 1 + 4 π 2 ν 2 τ up 2
F resp , tot ( ν ) = c ( ν ) ( | h ( ν ) | + m ( ν ) )
ρ edge = ε 0 ε AR | E edge | .
C self = δ ρ edge δ V tot = ε 0 ε s A δ E edge δ V tot
C self = ε 0 ε s A N p L p δ E edge δ E avg = C tot δ E edge δ E avg
E S E edge = n S ε 0 ε S q
E S = E edge q n S / ( ε 0 ε S )
( E edge ( L P L S ) L edge + ( E edge q n S ε 0 ε S ) E S L S ) = V tot N P
q ρ edge ε 0 ε S = E edge = V tot N P L P + q n S ε 0 ε S L S L P
C self A = q ρ edge V tot = E edge V tot ε 0 ε S
= ε 0 ε S L P ( 1 N P + q n S ε 0 ε S L S V tot )
V ( I ( t ) ) = V ( I 0 ) + V I | I 0 ( I ( t ) I 0 ) + 1 2 2 V I 2 | I 0 ( I ( t ) I 0 ) 2
with : I ( t ) = I 0 + Δ I sin ( 2 π ν t )
V ( I ( t ) ) = V 0 + V | I 0 Δ I sin ( 2 π ν t ) + 1 2 V I 0 ( Δ I sin ( 2 π ν t ) ) 2
V lock in = V ¯ 0 V ( I ( t ) ) ¯
V lock in = V 0 V 0 V | I 0 Δ I sin ( 2 π ν t ) ¯ = 0 V | I 0 ( Δ I sin ( 2 π ν t ) ) 2 ¯ = 1 2 V | I 0 Δ I 2 1 2
V lock in = V rect = 1 4 V | I 0 Δ I 2 Δ I = 2 I eff = 2 I RF , QCL
= 1 2 V | I 0 I RF , QCL 2 = 1 2 V | I 0 I RF , QCL 2
P RF = R = 50 Ω I RF , tot 2 V RF , tot = 2 R P RF
with : I RF , tot 2 = V RF , tot 2 R tot 2 and : R tot = 2 R
I RF , tot = V RF , tot R L + Z Q and V RF , QCL = Z Q I RF , tot
V RF , QCL = V RF , tot R L I RF , tot = V RF , tot Z Q R L + Z Q
I RF , QCL = V RF , QCL R QCL = V RF , tot Z 0 R QCL ( R L + Z Q ) = Z tot
V rect = 2 | V | P RF R L R QCL 1 ( R L + R QCL ) 2 ( 1 + ( ω R QCL C QCL ) 2 1 + ( ω R ¯ C QCL ) 2 ) R QCL 2 1 + ( ω R QCL C QCL ) 2
| h ( ω ) | = 1 1 + ω 4 τ p 2 τ st 2 + ω 2 τ st τ p ( τ p τ st + 2 τ p τ up + τ p τ st τ up 2 2 )
2 τ p A ˙ 0 i 2 τ p ( ω 0 2 ω 0 c 2 2 ω 0 ) cavity dispersion A 0 = ( g 0 G ˜ 0 1 ) net gain A 0 + 2 g 0 G ˜ 0 [ A 1 M + δ * κ 0 , 1 + A 1 M δ κ 0 , 1 ] modulation term
2 i τ p ( ω 0 2 ω 0 c 2 2 ω 0 ) A 0 = ( g 0 n 1 ) A 0 + 2 g 0 n M + δ * κ 0 , 1 A 1
| A 0 | 2 = 4 ( g 0 n ) 2 δ * 2 κ 0 , 1 2 ( 1 g 0 n ) 2 4 τ p 2 ( ω 0 2 ω 0 c 2 2 ω 0 ) 2 | A 1 | 2
m ( ν ) = | A 0 | 2 = 4 ( g 0 n ) 2 δ * 2 κ 0 , 1 2 modulation | A 1 | 2 roll off lasing mode 1 δ 2 ( 1 + 16 τ p 2 π 2 ( ν 2 ν 0 2 ν ) 2 δ 2 ) 2 resonance 1 1 + 4 π 2 ν 2 τ up 2 = | M + |
F resp , tot ( ν ) = c ( ν ) ( | h ( ν ) | + m ( ν ) )

Metrics