Abstract

We demonstrate a source of correlated photon pairs which will have applications in future integrated quantum photonic circuits. The source utilizes spontaneous four-wave mixing (SFWM) in a dispersion-engineered nanowaveguide made of AlGaAs, which has merits of negligible two-photon absorption and low spontaneous Raman scattering (SpRS). We observe a coincidence-to-accidental (CAR) ratio up to 177, mainly limited by propagation losses. Experimental results agree well with theoretical predictions of the SFWM photon pair generation and the SpRS noise photon generation. We also study the effects from the SpRS, propagation losses, and waveguide lengths on the quality of our source.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement

Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex S. Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. O’Brien, and Mark G. Thompson
Opt. Express 21(23) 27826-27834 (2013)

Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide

C. Xiong, Christelle Monat, Alex S. Clark, Christian Grillet, Graham D. Marshall, M. J. Steel, Juntao Li, Liam O’Faolain, Thomas F. Krauss, John G. Rarity, and Benjamin J. Eggleton
Opt. Lett. 36(17) 3413-3415 (2011)

On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform

Nobuyuki Matsuda, Peter Karkus, Hidetaka Nishi, Tai Tsuchizawa, William J. Munro, Hiroki Takesue, and Koji Yamada
Opt. Express 22(19) 22831-22840 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
    [Crossref]
  2. F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
    [Crossref]
  3. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
    [Crossref] [PubMed]
  4. F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
    [Crossref] [PubMed]
  5. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
    [Crossref]
  6. A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
    [Crossref]
  7. P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
    [Crossref]
  8. P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
    [Crossref] [PubMed]
  9. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
    [Crossref] [PubMed]
  10. A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
    [Crossref]
  11. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution,” Opt. Express 16, 16052 (2008).
    [Crossref] [PubMed]
  12. S. Arahira and H. Murai, “Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device,” Opt. Express 21, 7841 (2013).
    [Crossref] [PubMed]
  13. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291 (2014).
    [Crossref] [PubMed]
  14. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [Crossref]
  15. K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
    [Crossref] [PubMed]
  16. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755 (2007).
    [Crossref] [PubMed]
  17. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199 (2012).
    [Crossref]
  18. M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
    [Crossref]
  19. P. Kultavewuti, V. Pusino, M. Sorel, and J. S. Aitchison, “Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators,” Opt. Lett. 40, 3029 (2015).
    [Crossref] [PubMed]
  20. L. G. Helt, M. J. Steel, and J. E. Sipe, “Spontaneous parametric downconversion in waveguides: what’s loss got to do with it?,,” New J. Phys. 17, 013055 (2015).
    [Crossref]
  21. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205–1210 (1987).
    [Crossref]
  22. G. F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, Inc., 1999).
  23. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev., A 75, 023803 (2007).
    [Crossref]
  24. Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
    [Crossref]
  25. P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. K. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814 (2014).
    [Crossref] [PubMed]
  26. M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.
  27. We are analyzing and preparing a manuscript on polarization-entangled photon pair generation with orthogonal pumping using the current waveguide design.
  28. S. Wang and G. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” IEEE J. Sel. Top. Quantum Electron. 15, 1733–1740 (2009).
    [Crossref]
  29. C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
    [Crossref] [PubMed]
  30. J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
    [Crossref]
  31. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
    [Crossref]
  32. K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–917 (2014).
    [Crossref] [PubMed]
  33. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
    [Crossref]

2015 (3)

L. G. Helt, M. J. Steel, and J. E. Sipe, “Spontaneous parametric downconversion in waveguides: what’s loss got to do with it?,,” New J. Phys. 17, 013055 (2015).
[Crossref]

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

P. Kultavewuti, V. Pusino, M. Sorel, and J. S. Aitchison, “Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators,” Opt. Lett. 40, 3029 (2015).
[Crossref] [PubMed]

2014 (7)

K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–917 (2014).
[Crossref] [PubMed]

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291 (2014).
[Crossref] [PubMed]

P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
[Crossref] [PubMed]

P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. K. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814 (2014).
[Crossref] [PubMed]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

2013 (3)

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

S. Arahira and H. Murai, “Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device,” Opt. Express 21, 7841 (2013).
[Crossref] [PubMed]

2012 (4)

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199 (2012).
[Crossref]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

2011 (1)

2010 (2)

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

2009 (2)

S. Wang and G. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” IEEE J. Sel. Top. Quantum Electron. 15, 1733–1740 (2009).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

2008 (1)

2007 (3)

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755 (2007).
[Crossref] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev., A 75, 023803 (2007).
[Crossref]

1997 (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

1995 (1)

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

1993 (1)

M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
[Crossref]

1987 (1)

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205–1210 (1987).
[Crossref]

Abolghasem, P.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Afzelius, M.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev., A 75, 023803 (2007).
[Crossref]

Aitchison, J. S.

Apiratikul, P.

Arahira, S.

Autebert, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

Barbieri, C.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Barz, S.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

Beetz, J.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Bijlani, B. J.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Bitauld, D.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Blauensteiner, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Boitier, F.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

Bonneau, D.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Braun, R.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205–1210 (1987).
[Crossref]

Broadbent, A.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

Bussières, F.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Caspani, L.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Choi, D.-Y.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Chu, S. T.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Clark, A. S.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Clausen, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Clerici, M.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Collins, M. J.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Coudreau, T.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Cristiani, I.

Dolgaleva, K.

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

Dorenbos, S. N.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Ducci, S.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Eckstein, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Edamatsu, K.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Eggleton, B. J.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

El Allali, M.

M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
[Crossref]

Engin, E.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Favero, I.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Ferrera, M.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Ferrier, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Filloux, P.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Fiore, A.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Fitzsimons, J. F.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

Foster, A. C.

Foster, M. A.

Fukuda, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Fürst, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Gaggero, A.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Gai, X.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Galopin, E.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

Gisin, N.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Goldner, P.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Hadfield, R. H.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Hamhuis, G. J.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Harada, K.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

He, J.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

He, L.

Helmy, A. S.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Helt, L. G.

L. G. Helt, M. J. Steel, and J. E. Sipe, “Spontaneous parametric downconversion in waveguides: what’s loss got to do with it?,,” New J. Phys. 17, 013055 (2015).
[Crossref]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199 (2012).
[Crossref]

Herrmann, H.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Hobson, W. S.

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

Höfling, S.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Holmes, B. M.

P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
[Crossref] [PubMed]

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Huang, Y.-P.

Hutchings, D. C.

P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
[Crossref] [PubMed]

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Islam, M. N.

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

Itabashi, S.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Itabashi, S.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Jennewein, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Jestin, Y.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Jiang, P.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Jugessur, A.

Kamp, M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Kang, D.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Kanter, G.

S. Wang and G. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” IEEE J. Sel. Top. Quantum Electron. 15, 1733–1740 (2009).
[Crossref]

Kao, Y.-H.

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

Kashefi, E.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

Keller, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Kikuchi, K.

Knoll, G. F.

G. F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, Inc., 1999).

Korzh, B.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Kosaka, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Kowligy, A. S.

Kues, M.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Kultavewuti, P.

Kumar, P.

Lacava, C.

Lee, K. F.

Lemaître, A.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Leo, G.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Leoni, R.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Lermer, M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Lim, H. C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev., A 75, 023803 (2007).
[Crossref]

Lindenthal, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Liscidini, M.

Little, B. E.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Luther-Davies, B.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Madden, S. J.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Manquest, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

Marsili, F.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Matsuda, N.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Mattioli, F.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Meier, J.

Meyenburg, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Milman, P.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Minzioni, P.

Mitsumori, Y.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Mohammed, W. S.

Mojahedi, M.

Morandotti, R.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Moss, D. J.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Murai, H.

Murphy, T. E.

Nam, S. W.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Natarajan, C. M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Nejad, S. J.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Ng, W. C.

Notzel, R.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

OBrien, J. L.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Ömer, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Orieux, A.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Ottaviano, L.

M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.

Oxenløwe, L. K.

M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.

Pasquazi, A.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Peccianti, M.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Perdigues, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Porkolab, G. A.

Pu, M.

M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.

Pusino, V.

Qian, L.

Rarity, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Reimer, C.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Richardson, C. J. K.

Roztocki, P.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Sahin, D.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Sanjines, R.

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

Santamato, A.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Sarrafi, P.

P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
[Crossref] [PubMed]

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

Sato, A.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Saylor, J. M.

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

Scheidl, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Schmitt-Manderbach, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Semenova, E.

M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.

Shibata, N.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205–1210 (1987).
[Crossref]

Shimizu, R.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Silberhorn, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Silverstone, J. W.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Sipe, J. E.

L. G. Helt, M. J. Steel, and J. E. Sipe, “Spontaneous parametric downconversion in waveguides: what’s loss got to do with it?,,” New J. Phys. 17, 013055 (2015).
[Crossref]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199 (2012).
[Crossref]

Sirtori, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

Slusher, R. E.

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

Sodnik, Z.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Sohler, W.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Sorel, M.

Sørensen, C. B.

M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
[Crossref]

Steel, M. J.

L. G. Helt, M. J. Steel, and J. E. Sipe, “Spontaneous parametric downconversion in waveguides: what’s loss got to do with it?,,” New J. Phys. 17, 013055 (2015).
[Crossref]

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Takesue, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Tanner, M. G.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Thompson, M. G.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Tidemand-Petersson, P.

M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
[Crossref]

Tiefenbacher, F.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Tiranov, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Tokura, Y.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Trojek, P.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Tsuchida, H.

Tsuchizawa, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Ursin, R.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Veje, E.

M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
[Crossref]

Velev, V. G.

Verma, V. B.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Waarts, R.

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205–1210 (1987).
[Crossref]

Walther, P.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

Wang, B.

Wang, J.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Wang, K.-Y.

Wang, S.

S. Wang and G. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” IEEE J. Sel. Top. Quantum Electron. 15, 1733–1740 (2009).
[Crossref]

Watanabe, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Wathen, J. J.

Weier, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Weihs, G.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Weinfurter, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Wetzel, B.

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Xiong, C.

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Yamada, K.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev., A 75, 023803 (2007).
[Crossref]

Yokoyama, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

Yoshizawa, A.

Yvind, K.

M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.

Zeilinger, A.

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Zhu, E. Y.

P. Sarrafi, E. Y. Zhu, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide,” Opt. Lett. 39, 5188–5191 (2014).
[Crossref] [PubMed]

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

Zwiller, V.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Appl. Phys. Lett. (3)

A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[Crossref]

P. Sarrafi, E. Y. Zhu, K. Dolgaleva, B. M. Holmes, D. C. Hutchings, J. S. Aitchison, and L. Qian, “Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip,” Appl. Phys. Lett. 103, 251115 (2013).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205–1210 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Wang and G. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” IEEE J. Sel. Top. Quantum Electron. 15, 1733–1740 (2009).
[Crossref]

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

J. Appl. Phys. (2)

J. He, C. Xiong, A. S. Clark, M. J. Collins, X. Gai, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire,” J. Appl. Phys. 112, 123101 (2012).
[Crossref]

Y.-H. Kao, M. N. Islam, J. M. Saylor, R. E. Slusher, and W. S. Hobson, “Raman effect in AlGaAs waveguides for subpicosecond pulses,” J. Appl. Phys. 78(4), 2198 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip,” Nat. Commun. 6, 8236 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8, 775–778 (2014).
[Crossref]

Nat. Phys. (1)

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

New J. Phys. (1)

L. G. Helt, M. J. Steel, and J. E. Sipe, “Spontaneous parametric downconversion in waveguides: what’s loss got to do with it?,,” New J. Phys. 17, 013055 (2015).
[Crossref]

Opt. Commun. (1)

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. OBrien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (1)

M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson, “Experimental determination of the GaAs and GaAlAs band-gap energy dependence on temperature and aluminum mole fraction in the direct band-gap region,” Phys. Rev. B 48, 4398–4404 (1993).
[Crossref]

Phys. Rev. Lett. (3)

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref] [PubMed]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III–V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Phys. Rev., A (1)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev., A 75, 023803 (2007).
[Crossref]

Science (1)

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref] [PubMed]

Other (3)

M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTh5A.9.

We are analyzing and preparing a manuscript on polarization-entangled photon pair generation with orthogonal pumping using the current waveguide design.

G. F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, Inc., 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A cross-sectional structure and (b) a simulated TE mode profile of a 700-nm-wide, deeply etched (3000 nm) AlGaAs nanowaveguide. The length of the nanowaveguide is 4.5 mm. (c) The second-order dispersion β(2) coefficients of the TE mode in deeply etched AlGaAs waveguides with waveguide widths ranging from 600 nm to 900 nm. All simulations are obtained with Lumerical MODE.
Fig. 2
Fig. 2 (a) The loss-included phase matching function ζ (see Eq. (6)) versus wavelength detunings and pump peak powers for the TE (solid curves) and the TM (dash-dot curves) modes of a 700-nm-wide waveguide, given the pump wavelength of 1555 nm, γ = 150 m−1W−1, α = 10 dB/cm, and L = 4.5 mm. (b) Plots of conversion efficiency, CE, from classical cw-FWM measurements and from theoretical predictions for both TE (blue circles for data and curve for theory) and TM (green triangles and curve). Note the discrepancy between the measured data and the theoretical plot for the TM mode is due to our OSA’s limited sensitivity.
Fig. 3
Fig. 3 A shematic diagram of the experimental setup for the spontaneous four wave mixing measurement, including: a modelocked laser (MLL), a bandpass filter (BPF), an Erbium-doped fiber amplifier (EDFA), a fiber polarization controller (FPC), a lensed fiber (LF), a fiber coupler (FC), a power meter (PM), an avalanche photodiode (APD), and a time interval analyzer (TIA).
Fig. 4
Fig. 4 (a) One of the recorded detection coincidence histograms, from which the measured coincidence rate (Cm) and the accidental coincidence rate (A) were calculated. In particular, it corresponds to the measurement with CAR ∼ 90, shown in (b). The inset zooms into the counts around the main coincidence peak at 0 ns. (b) Measured and fitted CAR versus coupled input pump peak powers. The inset plots measured and theoretically fitted pair generation rates μ. The integration time is 90 seconds for all measurement points.
Fig. 5
Fig. 5 The SFWM pair generation rate μ (per pump pulse per squared watts, in dB) as a function of propagation losses α (y-axis) and waveguide lengths L (x-axis). Values below −200 dB are omitted.
Fig. 6
Fig. 6 Effects of propagation loss and waveguide length on CAR, calculated using experimentally extracted physical parameters and taking into account the SpRS noise.

Tables (1)

Tables Icon

Table 1 Comparison with other AlGaAs sources and silicon-based sources.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω i .
Δ β = β s + β i 2 β p + 2 γ P ,
Δ β β ω p ( 2 ) ( Δ ω ) 2 + 2 γ P
P i SFWM = ω i B ( γ P L ) 2 sinc 2 ( Δ β L / 2 )
P i , out cls = P s , in ( γ P L eff ) 2 e α L ζ
ζ = α 2 α 2 + ( Δ β ) 2 ( 1 + 4 e α L sin 2 ( Δ β L / 2 ) ( 1 e α L ) 2 ) .
f = T s T i d ν ( T s d ν ) ( T i d ν ) ,
r acutal = r m 1 τ dt r m ,
μ = a P 2 ,
r j = b j P ,
s j = η j [ μ + r j ] ,
C = η s η i [ ( f μ ) + r s r i + μ r i + r s μ + μ d i η i + d s η s μ + r s d i η i + d s η s r i + d s d i η s η i ] .
A = [ η s ( μ + r s ) + d s ] [ η i ( μ + r i ) + d i ] .
CAR = C m A A .
r theory = [ L eff | g R ( Δ ν ) | N th N eff ] B τ P = b theory P ,
N th = { n th ; Δ ν < 0 , n th + 1 ; Δ ν > 0 ,
n th = 1 exp ( h Δ ν k T ) 1 = 1.85 ,
μ theory = B τ ( γ L eff ) 2 e 2 α L P 2 = a theory P 2 .

Metrics