Abstract

Spin angular momentum can contribute to both optical force and torque exerted on spheres. Orbit rate of spheres located in tightly focused LG beams with the same azimuthal mode index l is spin-controlled due to spin-orbit coupling. Laguerre-Gaussian beams with high-order azimuthal mode are used here to study the orbit rate of dielectric spheres. Orbit rates of spheres with varying sizes and refravtive indices are investigated as well as optical forces acting on spheres in LG beams with different azimuthal modes. These results would be much helpful to investigation on optical rotation and transfer of spin and orbital angular momentum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett
Opt. Lett. 22(1) 52-54 (1997)

Torque of guided light on an atom near an optical nanofiber

Fam Le Kien and Thomas Busch
Opt. Express 27(10) 15046-15061 (2019)

Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam

Yiqiong Zhao, David Shapiro, David Mcgloin, Daniel T. Chiu, and Stefano Marchesini
Opt. Express 17(25) 23316-23322 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
    [Crossref] [PubMed]
  3. P. B. Bareil and Y. Sheng, “Optical trapping of the anisotropic crystal nanorod,” Opt. Express 23(10), 13130–13140 (2015).
    [Crossref] [PubMed]
  4. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [Crossref] [PubMed]
  5. T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
    [Crossref] [PubMed]
  6. T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
    [Crossref]
  7. R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode,” Opt. Express 19(8), 7680–7688 (2011).
    [Crossref] [PubMed]
  8. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63(6), 063602 (2001).
    [Crossref]
  9. H. Little, C. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12(11), 2560–2565 (2004).
    [Crossref] [PubMed]
  10. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
    [Crossref]
  11. K. Cheng and B. D. Lü, “Radiation forces of a focused partially coherent flattened vortex beam on a Rayleigh spherical particle,” Optik (Stuttg.) 122(7), 604–609 (2011).
    [Crossref]
  12. S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
    [Crossref]
  13. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15(2), 524–534 (1998).
    [Crossref]
  14. P. Prentice, M. Macdonald, T. Frank, A. Cuschier, G. Spalding, W. Sibbett, P. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004).
    [Crossref] [PubMed]
  15. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  16. S. H. Simpson and S. Hanna, “Optical angular momentum transfer by Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 26(3), 625–638 (2009).
    [Crossref] [PubMed]
  17. P. K. Mondal, B. Deb, and S. Majumder, “Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules,” Phys. Rev. A 89(6), 063418 (2014).
    [Crossref]
  18. V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
    [Crossref] [PubMed]
  19. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
    [Crossref]
  20. M. Padgett, J. Courtial, and L. Allen, “Lignt’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  21. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
    [Crossref] [PubMed]
  22. D. B. Ruffner and D. G. Grier, “Optical forces and torques in nonuniform beams of light,” Phys. Rev. Lett. 108(17), 173602 (2012).
    [Crossref] [PubMed]
  23. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
    [Crossref]
  24. C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
    [Crossref]
  25. Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
    [Crossref]
  26. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
    [Crossref]
  27. E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
    [Crossref]
  28. Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
    [Crossref] [PubMed]
  29. Y. Cao, W. Song, W. Ding, F. Sun, and T. Zhu, “Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams,” Opt. Express 22(15), 18113–18118 (2014).
    [Crossref] [PubMed]
  30. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  31. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
    [Crossref]
  32. D. L. Andrews, Structured Light and its Application (Academic, 2008), Ch. 8.

2015 (2)

P. B. Bareil and Y. Sheng, “Optical trapping of the anisotropic crystal nanorod,” Opt. Express 23(10), 13130–13140 (2015).
[Crossref] [PubMed]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

2014 (4)

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

P. K. Mondal, B. Deb, and S. Majumder, “Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules,” Phys. Rev. A 89(6), 063418 (2014).
[Crossref]

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

Y. Cao, W. Song, W. Ding, F. Sun, and T. Zhu, “Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams,” Opt. Express 22(15), 18113–18118 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
[Crossref]

2012 (2)

2011 (2)

K. Cheng and B. D. Lü, “Radiation forces of a focused partially coherent flattened vortex beam on a Rayleigh spherical particle,” Optik (Stuttg.) 122(7), 604–609 (2011).
[Crossref]

R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode,” Opt. Express 19(8), 7680–7688 (2011).
[Crossref] [PubMed]

2010 (1)

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

2009 (2)

S. H. Simpson and S. Hanna, “Optical angular momentum transfer by Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 26(3), 625–638 (2009).
[Crossref] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

2008 (2)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
[Crossref]

2007 (3)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
[Crossref] [PubMed]

2006 (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

2004 (3)

2003 (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

2001 (1)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63(6), 063602 (2001).
[Crossref]

1999 (1)

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
[Crossref]

1998 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1977 (1)

E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ahlawat, S.

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Lignt’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Ando, T.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Arlt, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63(6), 063602 (2001).
[Crossref]

Asavei, T.

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Barbieri, M.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

Bareil, P. B.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Brown, C.

Campbell, P.

Cao, Y.

Chen, L.

Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
[Crossref]

Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[Crossref] [PubMed]

Cheng, K.

K. Cheng and B. D. Lü, “Radiation forces of a focused partially coherent flattened vortex beam on a Rayleigh spherical particle,” Optik (Stuttg.) 122(7), 604–609 (2011).
[Crossref]

Choi, C. H.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
[Crossref]

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Lignt’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Cuschier, A.

Dasgupta, R.

Deb, B.

P. K. Mondal, B. Deb, and S. Majumder, “Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules,” Phys. Rev. A 89(6), 063418 (2014).
[Crossref]

Desyatnikov, A. S.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

Dholakia, K.

Ding, W.

Y. Cao, W. Song, W. Ding, F. Sun, and T. Zhu, “Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams,” Opt. Express 22(15), 18113–18118 (2014).
[Crossref] [PubMed]

Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
[Crossref]

Frank, T.

Gahagan, K. T.

Gan, X.

Garcés-Chávez, V.

Gordon, M. S.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
[Crossref]

Grier, D. G.

D. B. Ruffner and D. G. Grier, “Optical forces and torques in nonuniform beams of light,” Phys. Rev. Lett. 108(17), 173602 (2012).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Gu, M.

Gupta, P. K.

Hanna, S.

Heckenberg, N. R.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]

Itoh, H.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Ivanic, J.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
[Crossref]

Izdebskaya, Y. V.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

Kivshar, Y. S.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Krolikowski, W. Z.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

Kuriakose, S.

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

Little, H.

Loke, V. L. Y.

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Lü, B. D.

K. Cheng and B. D. Lü, “Radiation forces of a focused partially coherent flattened vortex beam on a Rayleigh spherical particle,” Optik (Stuttg.) 122(7), 604–609 (2011).
[Crossref]

Macdonald, M.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Majumder, S.

P. K. Mondal, B. Deb, and S. Majumder, “Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules,” Phys. Rev. A 89(6), 063418 (2014).
[Crossref]

Mondal, P. K.

P. K. Mondal, B. Deb, and S. Majumder, “Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules,” Phys. Rev. A 89(6), 063418 (2014).
[Crossref]

Nieminen, T. A.

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[Crossref] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Ohtake, Y.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Otsu, T.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Lignt’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

Prentice, P.

Purcell, E. M.

E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
[Crossref]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

Rode, A. V.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[Crossref] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]

Ruedenberg, K.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
[Crossref]

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Optical forces and torques in nonuniform beams of light,” Phys. Rev. Lett. 108(17), 173602 (2012).
[Crossref] [PubMed]

Sheng, Y.

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

Shvedov, V. G.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

Sibbett, W.

Simpson, S. H.

Soneson, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63(6), 063602 (2001).
[Crossref]

Song, W.

Spalding, G.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Stilgoe, A. B.

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[Crossref] [PubMed]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Sun, F.

Y. Cao, W. Song, W. Ding, F. Sun, and T. Zhu, “Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams,” Opt. Express 22(15), 18113–18118 (2014).
[Crossref] [PubMed]

Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
[Crossref]

Swartzlander, G. A.

Takiguchi, Y.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Toyoda, H.

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

Verma, R. S.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wright, E. M.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63(6), 063602 (2001).
[Crossref]

Yan, S. H.

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

Yao, B. L.

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

Zhu, T.

Y. Cao, W. Song, W. Ding, F. Sun, and T. Zhu, “Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams,” Opt. Express 22(15), 18113–18118 (2014).
[Crossref] [PubMed]

Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
[Crossref]

Am. J. Phys. (1)

E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Z. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys., A Mater. Sci. Process. 100(2), 327–331 (2010).
[Crossref]

J. Chem. Phys. (1)

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825–8831 (1999).
[Crossref]

J. Opt. A (2)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9(8), S196–S203 (2007).
[Crossref]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10(11), 115005 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]

Nat. Mater. (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[Crossref]

Opt. Commun. (1)

Y. Cao, L. Chen, W. Ding, F. Sun, and T. Zhu, “Optical collection of multiple spheres in single tightly focused beams,” Opt. Commun. 311, 332–337 (2013).
[Crossref]

Opt. Express (8)

Y. Cao, A. B. Stilgoe, L. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[Crossref] [PubMed]

Y. Cao, W. Song, W. Ding, F. Sun, and T. Zhu, “Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams,” Opt. Express 22(15), 18113–18118 (2014).
[Crossref] [PubMed]

M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
[Crossref] [PubMed]

P. B. Bareil and Y. Sheng, “Optical trapping of the anisotropic crystal nanorod,” Opt. Express 23(10), 13130–13140 (2015).
[Crossref] [PubMed]

R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode,” Opt. Express 19(8), 7680–7688 (2011).
[Crossref] [PubMed]

P. Prentice, M. Macdonald, T. Frank, A. Cuschier, G. Spalding, W. Sibbett, P. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004).
[Crossref] [PubMed]

H. Little, C. Brown, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams,” Opt. Express 12(11), 2560–2565 (2004).
[Crossref] [PubMed]

V. L. Y. Loke, T. Asavei, A. B. Stilgoe, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Driving corrugated donut rotors with Laguerre-Gauss beams,” Opt. Express 22(16), 19692–19706 (2014).
[Crossref] [PubMed]

Opt. Rev. (1)

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Opt. Rev. 22(1), 170–173 (2015).
[Crossref]

Optik (Stuttg.) (1)

K. Cheng and B. D. Lü, “Radiation forces of a focused partially coherent flattened vortex beam on a Rayleigh spherical particle,” Optik (Stuttg.) 122(7), 604–609 (2011).
[Crossref]

Phys. Rev. A (4)

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

P. K. Mondal, B. Deb, and S. Majumder, “Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules,” Phys. Rev. A 89(6), 063418 (2014).
[Crossref]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63(6), 063602 (2001).
[Crossref]

Phys. Rev. Lett. (4)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical forces and torques in nonuniform beams of light,” Phys. Rev. Lett. 108(17), 173602 (2012).
[Crossref] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Lignt’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Sci. Rep. (1)

T. Otsu, T. Ando, Y. Takiguchi, Y. Ohtake, H. Toyoda, and H. Itoh, “Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam,” Sci. Rep. 4, 4579 (2014).
[Crossref] [PubMed]

Other (1)

D. L. Andrews, Structured Light and its Application (Academic, 2008), Ch. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transverse electric fields on the focal plane of LG05 beams with (a) RCP, (b) LCP and (c) LP and trajectories of a sphere with radius of 0.5 µm and refractive index of 1.57 in LG05 beams with (d) RCP and (e) LCP, respectively. The starting position is (-λ, -λ, -λ). (f) The change of x-component of the sphere’s displacements as a function of time. The periods are 0.0113 s, 0.0145 s and 0.0124 s for LCP, RCP and LP, individually. Numerical aperture of lens is 1.2. The wavelength of the beams is λ = 800 nm in water.
Fig. 2
Fig. 2 Transverse part (x and y components) of Poynting vector of tightly focused LG05 beams with (a) RCP and (b) LCP, respectively. The numerical aperture of lens is 1.2.
Fig. 3
Fig. 3 (a) Rotation rates, (b) tangential optical forces and (c) torques acting on a sphere on its stable rotation orbits in LG beams with differing azimuthal modes. the refractive index of the sphere is 1.57, of which the radius is 0.5 µm. (d) Comparison of angular momentum of lights with different polarizaiton states and angular momentum of the orbitally moving sphere in these beams.
Fig. 4
Fig. 4 Spin angular momentum in ħ per photon for non-paraxial Laguerre-Gaussian beams as a function of azimuthal mode index. The numerical aperture of the objective lens is NA = 1.2. Here the radial mode is p = 0.
Fig. 5
Fig. 5 Rotation rates of spheres with varying (a) sizes and (b) refractive indices in right and left circularly polarized LG05 beams. (a) The refractive index of the spheres is 1.57. (b) The radius of the spheres is 0.5 µm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E inc = n=1 m=n n a nm Rg M nm (kr)+ b nm Rg N nm (kr) ,
E scat = n=1 m=n n p nm M nm ( 1 ) ( kr )+ q nm N nm ( 1 ) ( kr ) ,
a= R 1 AR a 0 + R 1 BR b 0 ,
b= R 1 AR b 0 + R 1 BR a 0 ,
v= f light 3πηd ,
r( t+dt )=r( t )+vdt,
υ= v 2πR = | f orbit | 6 π 2 ηRd = | R× f orbit | 6 π 2 η R 2 d ,
s r = ε 0 Im( E θ E φ * ) /ω .
U= U 0 ( 2ψ ) l/2 L p l ( 2ψ )exp( ψ+ilφ ).
ψ= tan 2 θ / tan 2 θ 0
S z = 0 π/2 ( 2ψ ) l/2 L p l ( 2ψ )exp( ψ ) sinθcosθdθ 0 π/2 ( 2ψ ) l/2 L p l ( 2ψ )exp( ψ ) sinθdθ ,

Metrics