Abstract

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic lantern kW-class fiber amplifier

Juan Montoya, Christopher Hwang, Dale Martz, Christopher Aleshire, T. Y. Fan, and Daniel J. Ripin
Opt. Express 25(22) 27543-27550 (2017)

Mode-selective photonic lanterns for space-division multiplexing

Sergio G. Leon-Saval, Nicolas K. Fontaine, Joel R. Salazar-Gil, Burcu Ercan, Roland Ryf, and Joss Bland-Hawthorn
Opt. Express 22(1) 1036-1044 (2014)

Geometric requirements for photonic lanterns in space division multiplexing

Nicolas K. Fontaine, Roland Ryf, Joss Bland-Hawthorn, and Sergio G. Leon-Saval
Opt. Express 20(24) 27123-27132 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011).
    [Crossref] [PubMed]
  3. F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [Crossref] [PubMed]
  4. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  5. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
    [Crossref] [PubMed]
  7. D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
    [Crossref] [PubMed]
  8. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
    [Crossref] [PubMed]
  9. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [Crossref] [PubMed]
  10. R. J. Black and L. Gagnon, Optical Waveguide Modes: Polarization, Coupling and Symmetry (McGraw-Hill, 2009).
  11. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20(21), 23985–23993 (2012).
    [Crossref] [PubMed]
  12. S. M. Redmond, D. J. Ripin, C. X. Yu, S. J. Augst, T. Y. Fan, P. A. Thielen, J. E. Rothenberg, and G. D. Goodno, “Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam,” Opt. Lett. 37(14), 2832–2834 (2012).
    [Crossref] [PubMed]
  13. W. B. Veldkamp, J. R. Leger, and G. J. Swanson, “Coherent summation of laser beams using binary phase gratings,” Opt. Lett. 11(5), 303–305 (1986).
    [Crossref] [PubMed]
  14. T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron. 15(2), 291–293 (2009).
    [Crossref]
  15. G. D. Goodno, C. C. Shih, and J. E. Rothenberg, “Perturbative analysis of coherent combining efficiency with mismatched lasers,” Opt. Express 18(24), 25403–25414 (2010).
    [Crossref] [PubMed]
  16. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
    [Crossref] [PubMed]
  17. J. Montoya, S. J. Augst, K. Creedon, J. Kansky, T. Y. Fan, and A. Sanchez-Rubio, “External cavity beam combining of 21 semiconductor lasers using SPGD,” Appl. Opt. 51(11), 1724–1728 (2012).
    [Crossref] [PubMed]
  18. H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
    [Crossref] [PubMed]
  19. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett. 37(13), 2478–2480 (2012).
    [Crossref] [PubMed]
  20. C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013).
    [Crossref] [PubMed]
  21. C. Schulze, R. Brüning, S. Schröter, and M. Duparré, “Mode coupling in few-mode fibers induced by mechanical stress,” J. Lightwave Technol. 33(21), 4488–4496 (2015).
    [Crossref]
  22. T. A. Birks, B. J. Mangan, A. Díez, J. L. Cruz, and D. F. Murphy, ““Photonic lantern” spectral filters in multi-core Fiber,” Opt. Express 20(13), 13996–14008 (2012).
    [Crossref] [PubMed]

2015 (1)

2013 (3)

2012 (7)

2011 (3)

2010 (2)

2009 (2)

T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron. 15(2), 291–293 (2009).
[Crossref]

D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
[Crossref] [PubMed]

2005 (1)

1997 (1)

1986 (1)

Argyros, A.

Augst, S. J.

Birks, T. A.

Bland-Hawthorn, J.

Brüning, R.

Carhart, G. W.

Creedon, K.

Cruz, J. L.

Díez, A.

Duparré, M.

Eidam, T.

Englund, M.

Fan, T. Y.

Flamm, D.

Fontaine, N. K.

Forbes, A.

Goldizen, K. C.

Goodno, G. D.

Jansen, F.

Jauregui, C.

Kansky, J.

Leger, J. R.

Leon-Saval, S. G.

Liem, A.

Limpert, J.

Mangan, B. J.

Miller, D. A. B.

Montoya, J.

Murphy, D. F.

Murphy, D. V.

Naidoo, D.

Nielsen, M. D.

Noordegraaf, D.

Otto, H. J.

Redmond, S. M.

Ricklin, J. C.

Ripin, D. J.

Rothenberg, J. E.

Ryf, R.

Sanchez, A.

Sanchez-Rubio, A.

Schmidt, O.

Schreiber, T.

Schröter, S.

Schulze, C.

Shih, C. C.

Skovgaard, P. M.

Smith, A. V.

Smith, J. J.

Stutzki, F.

Swanson, G. J.

Thielen, P. A.

Tünnermann, A.

Unger, S.

Veldkamp, W. B.

Vorontsov, M. A.

Wirth, C.

Yu, C. X.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron. 15(2), 291–293 (2009).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (10)

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20(21), 23985–23993 (2012).
[Crossref] [PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
[Crossref] [PubMed]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[Crossref] [PubMed]

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
[Crossref] [PubMed]

T. A. Birks, B. J. Mangan, A. Díez, J. L. Cruz, and D. F. Murphy, ““Photonic lantern” spectral filters in multi-core Fiber,” Opt. Express 20(13), 13996–14008 (2012).
[Crossref] [PubMed]

G. D. Goodno, C. C. Shih, and J. E. Rothenberg, “Perturbative analysis of coherent combining efficiency with mismatched lasers,” Opt. Express 18(24), 25403–25414 (2010).
[Crossref] [PubMed]

Opt. Lett. (7)

Other (1)

R. J. Black and L. Gagnon, Optical Waveguide Modes: Polarization, Coupling and Symmetry (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Instructional schematic of a photonic lantern operating in reverse. The fundamental LP01 mode is launched into the output generating an amplitude and phase distribution among the input fibers. Time-reversal symmetry allows launching the conjugate inputs to reproduce the output.
Fig. 2
Fig. 2 Launching a single input on one of the input channels in a three-mode lantern results in a superposition of the three modes supported by the delivery fiber. The input and output relation may be described by a transfer matrix.
Fig. 3
Fig. 3 Input supermodes and the output modes of a lossless three-channel lantern where the input fibers lie in an equilateral triangle pattern. This ideal lossless lantern performs a unitary transformation mapping an orthogonal set of input vectors to an orthogonal set of output vectors.
Fig. 4
Fig. 4 Comparison of DOE-based CBC with a photonic-lantern-based beam combining approach. (Upper left) a single beam incident on a 3-channel DOE generates three output beams. (Lower left) a single channel on a photonic lantern generates three modes. (Upper right) three appropriately phased beams incident on a DOE generate a single output beam. (Lower right) three appropriately phased beams incident on a lantern generate a single mode.
Fig. 5
Fig. 5 Photonic lantern coherent combining schematic. The seed laser output is sent to a 1x3 splitter. The output of the splitter feeds an array of phase modulators. The output of the modulator array is input to a three-channel photonic lantern. The photonic lantern is mode matched to a three-moded gain fiber. The on-axis component of the output beam is sampled by a SPGD detector. The SPGD controller iteratively adjusts the input phases to maximize the on-axis intensity.
Fig. 6
Fig. 6 Top (Left): Representative mode profile with SPGD off. Top (Right): Output mode with SPGD on. Bottom: SPGD detector signal measuring the on-axis intensity. An increase in the on-axis intensity occurs when SPGD is turned on at time equals zero.
Fig. 7
Fig. 7 Modal decomposition of the output of the photonic lantern spliced to a passive 25/400 fiber before and after SPGD is turned on. SPGD combines the power in the fiber into the LP01 mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A=[ 1 3 1 3 1 3 1 6 1 6 2 6 1 2 1 2 0 ].
η= 1 N | m=1 N P m exp(j θ m ) | 2 m=1 N P m , 

Metrics