Abstract

We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media

Douglas Hobbs, Bruce Macleod, Ernest Sabatino, Sergey Mirov, Dmitri Martyshkin, Michael Mirov, Georgiy Tsoi, Sean McDaniel, and Gary Cook
Opt. Mater. Express 7(9) 3377-3388 (2017)

Compact Cr:ZnS channel waveguide laser operating at 2333 nm

John R. Macdonald, Stephen J. Beecher, Adam Lancaster, Patrick A. Berry, Kenneth L. Schepler, Sergey B. Mirov, and Ajoy K. Kar
Opt. Express 22(6) 7052-7057 (2014)

Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals

Ronald W. Stites, Sean A. McDaniel, Jacob O. Barnes, Douglas M. Krein, John H. Goldsmith, Shekhar Guha, and Gary Cook
Opt. Mater. Express 6(10) 3339-3353 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [Crossref]
  2. A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
    [Crossref]
  3. S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
    [Crossref]
  4. J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50, 204–2008 (2014).
    [Crossref]
  5. V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).
  6. D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).
  7. J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
    [Crossref]
  8. V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
    [Crossref]
  9. S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).
  10. D. Siche and H. Hartmann, “Source-material dependent growth limitations in unseeded dissociative sublimation of ZnSe,” J. Mater. Sci. 31, 6171–6175 (1996).
    [Crossref]
  11. P. Berry, “Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources,” Ph.D. thesis, University of Dayton (2010).
  12. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
    [Crossref] [PubMed]
  13. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
    [Crossref] [PubMed]
  14. A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
    [Crossref]
  15. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38, 2194–2196 (2013).
    [Crossref] [PubMed]
  16. P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3, 1250–1258 (2013).
    [Crossref]
  17. S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
    [Crossref]
  18. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
    [Crossref] [PubMed]
  19. E. Ghahramani, D. Moss, and J. Sipe, “Full-band-structure calculation of first, second, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe,” Phys. Rev. B 43, 9700 (1991).
    [Crossref]
  20. J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102, 161110 (2013).
    [Crossref]
  21. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin, “Erbium fiber laser–pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Lett. 27, 909–911 (2002).
    [Crossref]
  22. H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
    [Crossref]
  23. J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proc. SPIE8599 (2013).
    [Crossref]
  24. G. A. Slack, F. S. Ham, and R. M. Chrenko, “Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4,” Phys. Rev. 152, 376–402 (1966).
    [Crossref]
  25. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0–4.5-μm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24, 1720–1722 (1999).
    [Crossref]

2015 (2)

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
[Crossref]

2014 (2)

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50, 204–2008 (2014).
[Crossref]

2013 (4)

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38, 2194–2196 (2013).
[Crossref] [PubMed]

P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3, 1250–1258 (2013).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102, 161110 (2013).
[Crossref]

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

2012 (1)

2011 (1)

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

2010 (1)

2006 (1)

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

2005 (1)

2002 (1)

1999 (1)

1996 (2)

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

D. Siche and H. Hartmann, “Source-material dependent growth limitations in unseeded dissociative sublimation of ZnSe,” J. Mater. Sci. 31, 6171–6175 (1996).
[Crossref]

1991 (1)

E. Ghahramani, D. Moss, and J. Sipe, “Full-band-structure calculation of first, second, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe,” Phys. Rev. B 43, 9700 (1991).
[Crossref]

1966 (1)

G. A. Slack, F. S. Ham, and R. M. Chrenko, “Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4,” Phys. Rev. 152, 376–402 (1966).
[Crossref]

Adams, J. J.

Altshuler, G. B.

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

Badding, J. V.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Badikov, V. V.

Beecher, S. J.

Berry, P.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50, 204–2008 (2014).
[Crossref]

P. Berry, “Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources,” Ph.D. thesis, University of Dayton (2010).

Berry, P. A.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
[Crossref]

P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3, 1250–1258 (2013).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38, 2194–2196 (2013).
[Crossref] [PubMed]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102, 161110 (2013).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proc. SPIE8599 (2013).
[Crossref]

Bibeau, C.

Bookey, H. T.

Brown, G.

Chrenko, R. M.

G. A. Slack, F. S. Ham, and R. M. Chrenko, “Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4,” Phys. Rev. 152, 376–402 (1966).
[Crossref]

Cook, G.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

DeLoach, L.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Demirbas, U.

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

Doroshenko, M. E.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Erofeev, A. V.

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

Evans, J.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50, 204–2008 (2014).
[Crossref]

Evans, J. W.

J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proc. SPIE8599 (2013).
[Crossref]

Fedorov, V.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

Fedorov, V. V.

Furu, L. H.

Gapontsev, V.

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

Gapontsev, V. P.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

Gerasimenko, A. S.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Ghahramani, E.

E. Ghahramani, D. Moss, and J. Sipe, “Full-band-structure calculation of first, second, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe,” Phys. Rev. B 43, 9700 (1991).
[Crossref]

Gopalan, V.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Graham, K.

Ham, F. S.

G. A. Slack, F. S. Ham, and R. M. Chrenko, “Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4,” Phys. Rev. 152, 376–402 (1966).
[Crossref]

Hartmann, H.

D. Siche and H. Hartmann, “Source-material dependent growth limitations in unseeded dissociative sublimation of ZnSe,” J. Mater. Sci. 31, 6171–6175 (1996).
[Crossref]

He, R.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Healy, N.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Hobbs, D.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

Jelínek, M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Jelínková, H.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Kar, A. K.

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
[Crossref]

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102, 161110 (2013).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38, 2194–2196 (2013).
[Crossref] [PubMed]

P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3, 1250–1258 (2013).
[Crossref]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
[Crossref] [PubMed]

Khrushchev, I.

Komar, V. K.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Kovalenko, N. O.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Krishnamurthi, M.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Krol, D. M.

Krupke, W.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Kubecek, V.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Lancaster, A.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

Macdonald, J. R.

MacLeod, B.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

Martyshkin, D.

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

McDaniel, S.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

McDaniel, S. A.

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
[Crossref]

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3, 1250–1258 (2013).
[Crossref]

Mirov, M.

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

Mirov, M. S.

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

Mirov, S.

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin, “Erbium fiber laser–pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Lett. 27, 909–911 (2002).
[Crossref]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

Mitchell, J.

Mitchell, W.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

Moskalev, I.

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin, “Erbium fiber laser–pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Lett. 27, 909–911 (2002).
[Crossref]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

Moss, D.

E. Ghahramani, D. Moss, and J. Sipe, “Full-band-structure calculation of first, second, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe,” Phys. Rev. B 43, 9700 (1991).
[Crossref]

Nemec, M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Okhrimchuk, A. G.

Ottevaere, H.

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

Page, R.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Page, R. H.

Panyutin, V.

Payne, S.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Payne, S. A.

Peacock, A. C.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Peppers, J.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

Psaila, N. D.

Puzikov, V. M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Sabatino, E.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

Sazio, P. J. A.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Schepler, K.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50, 204–2008 (2014).
[Crossref]

Schepler, K. L.

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102, 161110 (2013).
[Crossref]

P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3, 1250–1258 (2013).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38, 2194–2196 (2013).
[Crossref] [PubMed]

J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proc. SPIE8599 (2013).
[Crossref]

Sennaroglu, A.

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

Shephard, J. D.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

Shestakov, A. V.

Siche, D.

D. Siche and H. Hartmann, “Source-material dependent growth limitations in unseeded dissociative sublimation of ZnSe,” J. Mater. Sci. 31, 6171–6175 (1996).
[Crossref]

Sipe, J.

E. Ghahramani, D. Moss, and J. Sipe, “Full-band-structure calculation of first, second, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe,” Phys. Rev. B 43, 9700 (1991).
[Crossref]

Slack, G. A.

G. A. Slack, F. S. Ham, and R. M. Chrenko, “Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4,” Phys. Rev. 152, 376–402 (1966).
[Crossref]

Smirnov, M. Z.

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

Sparks, J. R.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Šulc, J.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Thienpont, H.

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

Thomson, R. R.

Vasilyev, S.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

Vermeulen, N.

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

Vyhlídal, D.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Wilke, G.

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Zagoruiko, Y. A.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Adv. Mater. (1)

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc Selenide Optical Fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107, 031108 (2015).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102, 161110 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

L. DeLoach, R. Page, G. Wilke, S. Payne, and W. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50, 204–2008 (2014).
[Crossref]

J. Mater. Sci. (1)

D. Siche and H. Hartmann, “Source-material dependent growth limitations in unseeded dissociative sublimation of ZnSe,” J. Mater. Sci. 31, 6171–6175 (1996).
[Crossref]

Opt. Commun. (1)

A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115–120 (2006).
[Crossref]

Opt. Lett. (6)

Opt. Mat. Express (1)

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum efficiency,” Opt. Mat. Express 4, 2225–2232 (2014).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

G. A. Slack, F. S. Ham, and R. M. Chrenko, “Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4,” Phys. Rev. 152, 376–402 (1966).
[Crossref]

Phys. Rev. B (1)

E. Ghahramani, D. Moss, and J. Sipe, “Full-band-structure calculation of first, second, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe,” Phys. Rev. B 43, 9700 (1991).
[Crossref]

Proc. SPIE (2)

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
[Crossref]

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E (2013).
[Crossref]

Other (6)

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proc. SPIE8599 (2013).
[Crossref]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” Conference on Lasers and Electro-Optics (CLEO) p. JM4K.2 (2013).

D. Martyshkin, V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. Mirov, “High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8–4.2 um,” Conference on Lasers and Electro-Optics (CLEO) p. SF1F.2 (2015).

V. Fedorov, M. S. Mirov, S. Mirov, V. Gapontsev, A. V. Erofeev, M. Z. Smirnov, and G. B. Altshuler, “Compact 1J mid-IR Cr:ZnSe Laser,” Frontiers in Optics 2012/Laser ScienceXXVIII p. FW6B.9 (2012).
[Crossref]

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” Advanced Solid State Lasers p. AW4A.1 (2015).

P. Berry, “Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources,” Ph.D. thesis, University of Dayton (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Cladding structure created in Cr:ZnSe(A) and Fe:ZnSe(B) using the ULI setup described in the previous section. The waveguides had a diameter of approximately 110 μm and 80 μm respectively. Photo was taken looking into the direction of propagation.
Fig. 2
Fig. 2 Measured absorption cross-sections of Cr:ZnSe and Fe:ZnSe as a function of wavelength. The cross-section was calculated with the quoted sample concentration.
Fig. 3
Fig. 3 Optical setup used for power scaling of ULI waveguides in Cr and Fe doped zinc selenide. The Fe:ZnSe sample was placed in a vacuum chamber with AR windows (W1 and W2) and cooled to 77 K via conduction to a cold finger cooled by liquid nitrogen.
Fig. 4
Fig. 4 Calculation of the threshold pump power required for inversion in a material as a function of spot size.
Fig. 5
Fig. 5 Optical performance of the 111 μm, Cr:ZnSe waveguide laser.
Fig. 6
Fig. 6 A) Output mode profile of the ULI waveguide in Cr:ZnSe at an output power of 1 W. The red circle represents the approximate inner edge of the waveguide cladding. The photo has been scaled and resized for viewing. B) The unscaled image of the waveguide sample translated such that the beam was propagating through the bulk crystal instead of propagation through the waveguide. The waveguide structure can be seen below the beam and indicated by the red arrow.
Fig. 7
Fig. 7 Output spectrum of the Cr:ZnSe waveguide laser centered at 2522 nm measured with an Acton SP2500 spectrometer with a 0.5 nm resolution.
Fig. 8
Fig. 8 Slope efficiency obtained from the Fe:ZnSe waveguide laser. Inset picture shows the output mode of the Fe:ZnSe waveguide laser.
Fig. 9
Fig. 9 Output spectra from the Fe:ZnSe waveguide laser obtained using a Thorlabs OSA (Model OSA205).

Tables (3)

Tables Icon

Table 1 Summary of Bulk Fe:ZnSe and Cr:ZnSe Power Records

Tables Icon

Table 2 Summary of Cladding Waveguide Power Records for Fe:ZnSe and Cr:ZnSe

Tables Icon

Table 3 Parameters Used For Calculation of the Threshold Pump Power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = P π r 2
P th = h ν A l η τ σ
V = 2 π a λ n core 2 n clad 2
N = 4 V 2 π 2

Metrics