Abstract

We experimentally investigate the optical loss of graded-index (GI) core polymer optical waveguides with a 45-degree mirror on their one end fabricated using the photo-addressing method. In addition, we also theoretically analyze the loss of GI square-core waveguides with mirrors using a ray-trace simulation tool. Then, in the waveguide based optical link including the optical path conversions via 45-degree mirrors, we show that GI waveguides realize lower total optical loss than conventional step-index (SI) core waveguides. The lower loss in the GI waveguide link is attributed to the tight optical confinement at the core center even after reflection at the mirrors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design for polymer optical waveguides realizing efficient light coupling via 45-degree mirrors

Yoshie Morimoto and Takaaki Ishigure
Opt. Express 27(8) 10839-10853 (2019)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects

Takaaki Ishigure and Yusuke Takeyoshi
Opt. Express 15(9) 5843-5850 (2007)

References

  • View by:
  • |
  • |
  • |

  1. http://www/top500.org/
  2. A. Benner, “Optical interconnect opportunities in super computers and high end computing,” in Optical Fiber Communication Conference and Exposition (2012), paper Otu2B4.
  3. R. Selvaraj, H. T. Lin, and J. F. Mcdonald, “Integrated optical waveguides in polyimide for wafer scale integration,” J. Lightwave Technol. 6(6), 1034–1044 (1988).
    [Crossref]
  4. K. W. Jelley, G. T. Valliath, and J. W. Stafford, “High-speed chip-to-chip optical interconnect,” IEEE Photonics Technol. Lett. 4(10), 1157–1159 (1992).
    [Crossref]
  5. G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
    [Crossref]
  6. R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [Crossref]
  7. R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
    [Crossref]
  8. Y. Takeyoshi and T. Ishigure, “High-density 2×4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009).
    [Crossref]
  9. T. Kosugi and T. Ishigure, “Polymer parallel optical waveguide with graded-index rectangular cores and its dispersion analysis,” Opt. Express 17(18), 15959–15968 (2009).
    [Crossref] [PubMed]
  10. K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  11. R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
    [Crossref]
  12. T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
    [Crossref]
  13. T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
    [Crossref]
  14. Y. Morimoto, R. Kinoshita, A. Takahashi, and T. Ishigure, “45-degree mirrors on graded-index core polymer optical waveguides for low-loss light coupling,” in Proc. IEEE Photonics Conference (IEEE, 2014), pp. 48–49.
    [Crossref]
  15. T. Ishigure, K. Shitanda, and Y. Oizmi, “Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board,” Opt. Express 23(17), 22262–22273 (2015).
    [Crossref] [PubMed]
  16. T. Mori, K. Moriya, K. Kitazoe, S. Takayama, S. Terada, M. Fujiwara, K. Takahama, K. Choki, and T. Ishigure, “Polymer optical waveguide having unique refractive index profiles for ultra high-density interconnection,” in Optical Fiber Communication Conference and Exposition 2012 (OSA, 2012), paper Otu1L6.

2015 (1)

2013 (2)

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
[Crossref]

2012 (1)

2010 (1)

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

2009 (3)

Y. Takeyoshi and T. Ishigure, “High-density 2×4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009).
[Crossref]

T. Kosugi and T. Ishigure, “Polymer parallel optical waveguide with graded-index rectangular cores and its dispersion analysis,” Opt. Express 17(18), 15959–15968 (2009).
[Crossref] [PubMed]

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

2008 (1)

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

2004 (1)

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

1992 (1)

K. W. Jelley, G. T. Valliath, and J. W. Stafford, “High-speed chip-to-chip optical interconnect,” IEEE Photonics Technol. Lett. 4(10), 1157–1159 (1992).
[Crossref]

1988 (1)

R. Selvaraj, H. T. Lin, and J. F. Mcdonald, “Integrated optical waveguides in polyimide for wafer scale integration,” J. Lightwave Technol. 6(6), 1034–1044 (1988).
[Crossref]

Baghsiahi, H.

Bapst, U.

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Benner, A.

A. Benner, “Optical interconnect opportunities in super computers and high end computing,” in Optical Fiber Communication Conference and Exposition (2012), paper Otu2B4.

Berger, C.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Beyeler, R.

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Beyeler, R. É.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Bona, G. L.

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Budd, R.

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Choki, K.

R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
[Crossref]

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Dangel, R.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
[Crossref]

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Dellmann, L.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Fujita, K.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Fujiwara, M.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Gmur, M.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Graham-Jones, J.

Hamelin, R. É.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Horst, F.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Ishigure, T.

Jelley, K. W.

K. W. Jelley, G. T. Valliath, and J. W. Stafford, “High-speed chip-to-chip optical interconnect,” IEEE Photonics Technol. Lett. 4(10), 1157–1159 (1992).
[Crossref]

Kinoshita, R.

R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
[Crossref]

Y. Morimoto, R. Kinoshita, A. Takahashi, and T. Ishigure, “45-degree mirrors on graded-index core polymer optical waveguides for low-loss light coupling,” in Proc. IEEE Photonics Conference (IEEE, 2014), pp. 48–49.
[Crossref]

Kosugi, T.

Kuruveettil, H.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Lamprecht, T.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Lee, B. S. P.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Li, J.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Lim, T. G.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Lin, H. T.

R. Selvaraj, H. T. Lin, and J. F. Mcdonald, “Integrated optical waveguides in polyimide for wafer scale integration,” J. Lightwave Technol. 6(6), 1034–1044 (1988).
[Crossref]

Mcdonald, J. F.

R. Selvaraj, H. T. Lin, and J. F. Mcdonald, “Integrated optical waveguides in polyimide for wafer scale integration,” J. Lightwave Technol. 6(6), 1034–1044 (1988).
[Crossref]

Milward, D.

Morf, T.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Mori, T.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Morimoto, Y.

Y. Morimoto, R. Kinoshita, A. Takahashi, and T. Ishigure, “45-degree mirrors on graded-index core polymer optical waveguides for low-loss light coupling,” in Proc. IEEE Photonics Conference (IEEE, 2014), pp. 48–49.
[Crossref]

Moriya, K.

Offrein, B. J.

R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
[Crossref]

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Oggioni, S.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Oizmi, Y.

Owari, H.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Papakonstantinou, I.

Pinjala, D.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Pitwon, R. C. A.

Ramana, P. V.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Sakamoto, M.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Selvaraj, R.

R. Selvaraj, H. T. Lin, and J. F. Mcdonald, “Integrated optical waveguides in polyimide for wafer scale integration,” J. Lightwave Technol. 6(6), 1034–1044 (1988).
[Crossref]

Selviah, D. R.

Shing, J. L. H.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Shioda, T.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Shirato, Y.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Shitanda, K.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Spreafico, M.

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

Stafford, J. W.

K. W. Jelley, G. T. Valliath, and J. W. Stafford, “High-speed chip-to-chip optical interconnect,” IEEE Photonics Technol. Lett. 4(10), 1157–1159 (1992).
[Crossref]

Suzuki, K.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

Takahama, K.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Takahashi, A.

Y. Morimoto, R. Kinoshita, A. Takahashi, and T. Ishigure, “45-degree mirrors on graded-index core polymer optical waveguides for low-loss light coupling,” in Proc. IEEE Photonics Conference (IEEE, 2014), pp. 48–49.
[Crossref]

Takeyoshi, Y.

Terada, S.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Valliath, G. T.

K. W. Jelley, G. T. Valliath, and J. W. Stafford, “High-speed chip-to-chip optical interconnect,” IEEE Photonics Technol. Lett. 4(10), 1157–1159 (1992).
[Crossref]

Wang, K.

Watanabe, K.

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

Yamada, K.

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. W. Jelley, G. T. Valliath, and J. W. Stafford, “High-speed chip-to-chip optical interconnect,” IEEE Photonics Technol. Lett. 4(10), 1157–1159 (1992).
[Crossref]

IEEE Trans. Adv. Packag. (2)

T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit board,” IEEE Trans. Adv. Packag. 32(2), 509–516 (2009).
[Crossref]

R. Dangel, C. Berger, R. É. Beyeler, L. Dellmann, M. Gmur, R. É. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (2)

Proc. SPIE (2)

T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. SPIE 7607, 76070S (2010).
[Crossref]

G. L. Bona, B. J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann, and F. Horst, “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. SPIE 5453, 134–141 (2004).
[Crossref]

Other (4)

http://www/top500.org/

A. Benner, “Optical interconnect opportunities in super computers and high end computing,” in Optical Fiber Communication Conference and Exposition (2012), paper Otu2B4.

Y. Morimoto, R. Kinoshita, A. Takahashi, and T. Ishigure, “45-degree mirrors on graded-index core polymer optical waveguides for low-loss light coupling,” in Proc. IEEE Photonics Conference (IEEE, 2014), pp. 48–49.
[Crossref]

T. Mori, K. Moriya, K. Kitazoe, S. Takayama, S. Terada, M. Fujiwara, K. Takahama, K. Choki, and T. Ishigure, “Polymer optical waveguide having unique refractive index profiles for ultra high-density interconnection,” in Optical Fiber Communication Conference and Exposition 2012 (OSA, 2012), paper Otu1L6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 On-board and board-to-board optical link.
Fig. 2
Fig. 2 Optical path conversion via a 45-degree mirror.
Fig. 3
Fig. 3 Fabrication technique of the photo-addressing method.
Fig. 4
Fig. 4 Cross section of a GI square-core waveguide.
Fig. 5
Fig. 5 Over view of a GI square-core waveguide with mirrors.
Fig. 6
Fig. 6 Actual measurement setup on the (a) Tx side (b) Rx side.
Fig. 7
Fig. 7 NFP at connection point 2 of (a) the SI waveguide (b) the GI waveguide.
Fig. 8
Fig. 8 NFP of single-mode fiber (SMF).
Fig. 9
Fig. 9 Misalignment tolerance at connection point (a) 1 (b) 2 (c) 3 (d) 4.
Fig. 10
Fig. 10 Link model for simulation.
Fig. 11
Fig. 11 Light intensity distribution at connection point 2 and 4. The detected areas of NFPs for connection points 2 and 4 are 40 × 40 μm square and 50-μmø circular shapes, respectively.
Fig. 12
Fig. 12 Breakdown of the optical link loss.
Fig. 13
Fig. 13 Points where Fresnel reflection loss occurs.
Fig. 14
Fig. 14 Calculated optical loss.

Tables (4)

Tables Icon

Table 1 Insertion loss of the waveguides.

Tables Icon

Table 2 −0.5-dB tolerance width.

Tables Icon

Table 3 Calculated Fresnel reflection loss at each point.

Tables Icon

Table 4 Calculated link loss of the waveguides.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= ( n 1 n 2 n 1 + n 2 ) 2

Metrics