Abstract

In this paper we present a general method for estimating rates of accidental coincidence between a pair of single photon detectors operated within their saturation regimes. By folding the effects of recovery time of both detectors and the detection circuit into an “effective duty cycle” we are able to accomodate complex recovery behaviour at high event rates. As an example, we provide a detailed high-level model for the behaviour of passively quenched avalanche photodiodes, and demonstrate effective background subtraction at rates commonly associated with detector saturation. We show that by post-processing using the updated model, we observe an improvement in polarization correlation visibility from 88.7% to 96.9% in our experimental dataset. This technique will be useful in improving the signal-to-noise ratio in applications which depend on coincidence measurements, especially in situations where rapid changes in flux may cause detector saturation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode

Guang Wu, Yi Jian, E Wu, and Heping Zeng
Opt. Express 17(21) 18782-18787 (2009)

Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching

Robert G. W. Brown, Robin Jones, John G. Rarity, and Kevin D. Ridley
Appl. Opt. 26(12) 2383-2389 (1987)

Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, O. Thomas, and A. J. Shields
Opt. Express 19(14) 13268-13276 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. G. W. Brown, K. D. Ridley, and J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [Crossref] [PubMed]
  2. R. G. W. Brown, R. Jones, J. G. Rarity, and K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [Crossref] [PubMed]
  3. H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
    [Crossref]
  4. F. Zappa, S. Cova, M. Ghioni, A. Lacaita, and C. Samori, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956 (1996).
    [Crossref] [PubMed]
  5. Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment using pairs of light quanta produced by optical parametric down conversion,” Phy. Rev. Lett. 61, 2921 (1988).
    [Crossref]
  6. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  7. M. Malik, O. S. Magaña Loaiza, and R. W. Boyd, “Quantum-secured imaging,” Appl. Phys. Lett. 101, 8–12 (2012).
    [Crossref]
  8. D. Schlenk and H. Weinfurter, “Breaking the diffraction limit using entanglment based microscopy,” Proc. SPIE 8875, 887509 (2014).
    [Crossref]
  9. P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
    [Crossref] [PubMed]
  10. A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
    [Crossref]
  11. Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
    [Crossref] [PubMed]
  12. C. Cheng, R. Chandrasekara, Y. C. Tan, and A. Ling, “Space qualified nanosatellite electronics platform for photon pair experiments,” J. Lightwave Technol. 33, 4799–4804 (2015).
    [Crossref]
  13. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
    [Crossref]
  14. S. Karmakar, R. Meyers, and Y. Shih, “Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light,” Proc. SPIE 8518, 851805 (2012).
    [Crossref]
  15. X.-F. Liu, X.-H. Chen, X.-R. Yao, W.-K. Yu, G.-J. Zhai, and L.-A. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39, 2314–2317 (2014).
    [Crossref] [PubMed]
  16. M. Stipcevic, D. Wang, and R. Ursin, “Characterization of a Commercially Available Large Area, High Detection Efficiency Single-Photon Avalanche Diode,” J. Lightwave Technol. 31, 3591–3596 (2013).
    [Crossref]
  17. S. V. Polyakov, M. Ware, and A. Migdall, “High-accuracy calibration of photon-counting detectors,” Proc. SPIE 6372, 63720J (2006).
    [Crossref]
  18. H. Wyllie, “A correction formula for coincidence counting,” Appl. Radiat. Isot. 38, 385–389 (1987).
    [Crossref]
  19. R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
    [Crossref]
  20. K. Schätzel, “Dead time correction of photon correlation functions,” Appl. Phys. B 41, 95–102 (1986).
    [Crossref]

2015 (3)

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

C. Cheng, R. Chandrasekara, Y. C. Tan, and A. Ling, “Space qualified nanosatellite electronics platform for photon pair experiments,” J. Lightwave Technol. 33, 4799–4804 (2015).
[Crossref]

2014 (3)

X.-F. Liu, X.-H. Chen, X.-R. Yao, W.-K. Yu, G.-J. Zhai, and L.-A. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39, 2314–2317 (2014).
[Crossref] [PubMed]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

D. Schlenk and H. Weinfurter, “Breaking the diffraction limit using entanglment based microscopy,” Proc. SPIE 8875, 887509 (2014).
[Crossref]

2013 (1)

2012 (3)

M. Malik, O. S. Magaña Loaiza, and R. W. Boyd, “Quantum-secured imaging,” Appl. Phys. Lett. 101, 8–12 (2012).
[Crossref]

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

S. Karmakar, R. Meyers, and Y. Shih, “Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light,” Proc. SPIE 8518, 851805 (2012).
[Crossref]

2008 (1)

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

2006 (1)

S. V. Polyakov, M. Ware, and A. Migdall, “High-accuracy calibration of photon-counting detectors,” Proc. SPIE 6372, 63720J (2006).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

1996 (1)

1993 (1)

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

1988 (1)

Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment using pairs of light quanta produced by optical parametric down conversion,” Phy. Rev. Lett. 61, 2921 (1988).
[Crossref]

1987 (2)

1986 (2)

Alley, C. O.

Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment using pairs of light quanta produced by optical parametric down conversion,” Phy. Rev. Lett. 61, 2921 (1988).
[Crossref]

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Barreiro, C.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Bell, J. E. C.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

M. Malik, O. S. Magaña Loaiza, and R. W. Boyd, “Quantum-secured imaging,” Appl. Phys. Lett. 101, 8–12 (2012).
[Crossref]

Brown, R. G. W.

Chandrasekara, R.

C. Cheng, R. Chandrasekara, Y. C. Tan, and A. Ling, “Space qualified nanosatellite electronics platform for photon pair experiments,” J. Lightwave Technol. 33, 4799–4804 (2015).
[Crossref]

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

Chen, X.-H.

Cheng, C.

C. Cheng, R. Chandrasekara, Y. C. Tan, and A. Ling, “Space qualified nanosatellite electronics platform for photon pair experiments,” J. Lightwave Technol. 33, 4799–4804 (2015).
[Crossref]

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

Chuan, T. Y.

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Cova, S.

Dautet, H.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Deschamps, P.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Dion, B.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Durak, K.

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Ghioni, M.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Grieve, J. A.

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Guinnard, O.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Houlmann, R.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Itzler, M. a.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Jiang, X.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Jones, R.

Karmakar, S.

S. Karmakar, R. Meyers, and Y. Shih, “Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light,” Proc. SPIE 8518, 851805 (2012).
[Crossref]

Kurtsiefer, C.

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Lacaita, A.

Lamas-Linares, A.

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Ling, A.

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

C. Cheng, R. Chandrasekara, Y. C. Tan, and A. Ling, “Space qualified nanosatellite electronics platform for photon pair experiments,” J. Lightwave Technol. 33, 4799–4804 (2015).
[Crossref]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Liu, X.-F.

Lunghi, T.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Macgregor, A. D.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Macsween, D.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Magaña Loaiza, O. S.

M. Malik, O. S. Magaña Loaiza, and R. W. Boyd, “Quantum-secured imaging,” Appl. Phys. Lett. 101, 8–12 (2012).
[Crossref]

Malik, M.

M. Malik, O. S. Magaña Loaiza, and R. W. Boyd, “Quantum-secured imaging,” Appl. Phys. Lett. 101, 8–12 (2012).
[Crossref]

Marcikic, I.

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Mcintyre, R. J.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Meyers, R.

S. Karmakar, R. Meyers, and Y. Shih, “Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light,” Proc. SPIE 8518, 851805 (2012).
[Crossref]

Migdall, A.

S. V. Polyakov, M. Ware, and A. Migdall, “High-accuracy calibration of photon-counting detectors,” Proc. SPIE 6372, 63720J (2006).
[Crossref]

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Padgett, M. J.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Peloso, M. P.

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Polyakov, S. V.

S. V. Polyakov, M. Ware, and A. Migdall, “High-accuracy calibration of photon-counting detectors,” Proc. SPIE 6372, 63720J (2006).
[Crossref]

Rarity, J. G.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Ridley, K. D.

Samori, C.

Scarani, V.

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Schätzel, K.

K. Schätzel, “Dead time correction of photon correlation functions,” Appl. Phys. B 41, 95–102 (1986).
[Crossref]

Schlenk, D.

D. Schlenk and H. Weinfurter, “Breaking the diffraction limit using entanglment based microscopy,” Proc. SPIE 8875, 887509 (2014).
[Crossref]

Sean, Y. Y.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

Septriani, B.

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Shih, Y.

S. Karmakar, R. Meyers, and Y. Shih, “Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light,” Proc. SPIE 8518, 851805 (2012).
[Crossref]

Shih, Y. H.

Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment using pairs of light quanta produced by optical parametric down conversion,” Phy. Rev. Lett. 61, 2921 (1988).
[Crossref]

Stipcevic, M.

Tan, Y. C.

Tang, Z.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Trottier, C.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Ursin, R.

Wang, D.

Ware, M.

S. V. Polyakov, M. Ware, and A. Migdall, “High-accuracy calibration of photon-counting detectors,” Proc. SPIE 6372, 63720J (2006).
[Crossref]

Webb, P. P.

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Weinfurter, H.

D. Schlenk and H. Weinfurter, “Breaking the diffraction limit using entanglment based microscopy,” Proc. SPIE 8875, 887509 (2014).
[Crossref]

Wildfeuer, C.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

Wu, L.-A.

Wyllie, H.

H. Wyllie, “A correction formula for coincidence counting,” Appl. Radiat. Isot. 38, 385–389 (1987).
[Crossref]

Yao, X.-R.

Yu, W.-K.

Zappa, F.

Zbinden, H.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zhai, G.-J.

Zhongkan, T.

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

Adv. Fluor. Sens. Tech. (1)

H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. Mcintyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Adv. Fluor. Sens. Tech. 1885, 240–250 (1993).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

K. Schätzel, “Dead time correction of photon correlation functions,” Appl. Phys. B 41, 95–102 (1986).
[Crossref]

Appl. Phys. Lett. (1)

M. Malik, O. S. Magaña Loaiza, and R. W. Boyd, “Quantum-secured imaging,” Appl. Phys. Lett. 101, 8–12 (2012).
[Crossref]

Appl. Radiat. Isot. (1)

H. Wyllie, “A correction formula for coincidence counting,” Appl. Radiat. Isot. 38, 385–389 (1987).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. a. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59, 1–8 (2012).
[Crossref]

Nat. Commun. (1)

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phy. Rev. Lett. (1)

Y. H. Shih and C. O. Alley, “New Type of Einstein-Podolsky-Rosen-Bohm Experiment using pairs of light quanta produced by optical parametric down conversion,” Phy. Rev. Lett. 61, 2921 (1988).
[Crossref]

Phys. Rev. A (1)

A. Ling, M. P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, and C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78, 020301 (2008).
[Crossref]

Proc. SPIE (4)

S. Karmakar, R. Meyers, and Y. Shih, “Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light,” Proc. SPIE 8518, 851805 (2012).
[Crossref]

S. V. Polyakov, M. Ware, and A. Migdall, “High-accuracy calibration of photon-counting detectors,” Proc. SPIE 6372, 63720J (2006).
[Crossref]

R. Chandrasekara, T. Zhongkan, T. Y. Chuan, C. Cheng, B. Septriani, K. Durak, J. A. Grieve, and A. Ling, “Deploying quantum light sources on nanosatellites i: lessons and perspectives on the optical system,” Proc. SPIE 9615, 96150S (2015).
[Crossref]

D. Schlenk and H. Weinfurter, “Breaking the diffraction limit using entanglment based microscopy,” Proc. SPIE 8875, 887509 (2014).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sci. Rep. (1)

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) An illustration of the interplay between event rate and recovery time. The waiting time distribution for a Poissonian source (of rate λ) is shown alongside a simple stepwise model for the detection probability, exhibiting a well defined “dead time” () with unit efficiency elsewhere. It is clear that a portion (A) of the event sequence will be detected, with a rate dependent efficiency, η = A/(A + B). (b) The effective duty cycle is calculated by combining a model for the incoming event sequence, with a model for the detector recovery process.
Fig. 2
Fig. 2 (a) A passive quenching circuit for a GM-APD where the device is in series with quench and sense resistors (Rq and Rs). A signal pulse (Vs) is monitored by a constant level discriminator (CLD) supplied with a reference voltage (VCLD). This gives rise to a digital pulse, suitable for counting on a microcontroller (µC). A simple method for identifying coincidences between two GM-APDs is to observe if the electronic pulses overlap within an electronic AND gate. (b) Measured pulse heights (corresponding to Vs in Eq. (6)) in a GM-APD (SAP500 Laser Components) as a function of bias voltage. The solid line is a fit using Eq. (6) with an offset corresponding to the breakdown voltage. The squared dependence of Vs upon Ve is clearly visible.
Fig. 3
Fig. 3 Illustration of the recovery of GM-APD excess voltage, signal probability and signal voltage as a function of time after an avalanche event. By comparing these trends to the reference voltage VCLD (plotted, normalized against the signal voltage) we can produce a detection probability curve (solid black line). The probability is seen to be exactly zero during the period where Vs <<VCLD, and rises sharply once this value is exceeded. There is a transition point where Vs >> VCLD as the dominant mechanism impacting the probability becomes Pa, and the combined probability Pd recovers towards its nominal value.
Fig. 4
Fig. 4 Example excess voltage (Ve), avalanche probability (Pa) and analogue pulse height (Vs) curves from the full numeric simulation, plotted for rates that are (a) below and (b) deep within the saturation region of the GM-APD. Also shown is the discriminator voltage (VCLD), with analogue pulses labelled to indicate whether they are sensed (black) or ignored (red) by the circuit. Thin vertical lines indicate the position of events in the input sequence. It is clear that in the saturated case, many events do not trigger avalanches (due to the low instantaneous Pa value), and of those that do, most are not sensed. The fraction of of the input sequence that goes on to produce sensed events is identified as the effective duty cycle η.
Fig. 5
Fig. 5 (a) An example calculation for a GM-APD with Ve,nom = 3Vc (15V and 5V respectively). Values calculated from the numerically simulated curves (see Fig 4) are shown against the input event rate. (b) Calculated effective duty cycle as a function of both nominal excess voltage Ve,nom and observed count rate. Contours are plotted at increments defined on the colorbar.
Fig. 6
Fig. 6 (a) Example coincidence data from the correlated photon source described in [11], undergoing field testing in near-Space conditions. Raw coincidence data is shown alongside data corrected using both Eq. 1 & 2. Visibility (the contrast of the fringes) is seen to increase from 88.8% to 96.9%. (b) Updated visibilities plotted alongside the original values taken from [11]. For all experimental runs we observe an increase, from a mean value of 93.0±1.1 % to 96.6±1.5 %. Shaded regions indicate one standard deviation.

Tables (1)

Tables Icon

Table 1 A selection of symbols used throughout the text, collected for clarity. We distinguish between a number of probabilities during the avalanche and recovery process.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C a c c = S 1 S 2 ( τ 1 + τ 2 ) .
C a c c = S 1 S 2 ( τ 1 η 1 + τ 2 η 2 ) .
C a c c = S 2 ( S 1 τ 1 η 1 ) + S 1 ( S 2 τ 2 η 2 ) .
V e ( t ) = V e , s e t ( 1 exp ( t / R C ) ) ,
P a = 1 exp ( V e / V c ) ,
V s = A V e 2 .
P s ( t ) = erf ( ( t t 0 ) / σ s ) ,
P d ( t ) = P s ( t ) P a ( V e ( t ) ) .

Metrics