Abstract

We report on the graphene-seeded growth and fabrication of photosensitive Cadmium telluride (CdTe)/graphene hybrid field-effect transistors (FETs) subjected to a post-growth activation process. CdTe thin films were selectively grown on pre-defined graphene, and their morphological, electrical and optoelectronic properties were systemically analyzed before and after the CdCl2 activation process. CdCl2-activated CdTe FETs showed p-type behavior with improved electrical features, including higher electrical conductivity (reduced sheet resistance from 1.09 × 109 to 5.55 × 107 Ω/sq.), higher mobility (from 0.025 to 0.20 cm2/(V·s)), and faster rise time (from 1.23 to 0.43 s). A post-growth activation process is essential to fabricate high-performance photosensitive CdTe/graphene hybrid devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single CdTe microwire photodetectors grown by close-spaced sublimation method

Gwangseok Yang, Byung-Jae Kim, Donghwan Kim, and Jihyun Kim
Opt. Express 22(16) 18843-18848 (2014)

Self-aligned growth of CdTe photodetectors using a graphene seed layer

Gwangseok Yang, Donghwan Kim, and Jihyun Kim
Opt. Express 23(19) A1081-A1086 (2015)

Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power

Eunwoo Cho, Yoonmook Kang, Donghwan Kim, and Jihyun Kim
Opt. Express 24(10) A791-A796 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
    [Crossref]
  2. A. McEvoy, T. Markvart, and L. Castañer, Solar Cells: Materials, Manufacture and Operation, in CdTe Thin-Film PV Modules 2nd ed. (Elsevier, 2013).
  3. X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
    [Crossref]
  4. W.-O. Seo, D. Kim, and J. Kim, “Flexible CdTe/CdS solar cells on thin glass substrates,” Opt. Express 23(7), A316–A321 (2015).
    [Crossref] [PubMed]
  5. C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
    [Crossref]
  6. K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999).
    [Crossref]
  7. I. M. Dharmadasa, “Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding,” Coatings 4(2), 282–307 (2014).
    [Crossref]
  8. H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
    [Crossref]
  9. Y. Jung, G. Yang, S. Chun, D. Kim, and J. Kim, “Post-growth CdCl₂ treatment on CdTe thin films grown on graphene layers using a close-spaced sublimation method,” Opt. Express 22(S3), A986–A991 (2014).
    [Crossref] [PubMed]
  10. J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
    [Crossref] [PubMed]
  11. B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
    [Crossref]
  12. C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
    [Crossref] [PubMed]
  13. J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).
  14. V. Valdna, F. Buschmann, and E. Mellikov, “Conductivity conversion in CdTe layers,” J. Cryst. Growth 161(1–4), 164–167 (1996).
    [Crossref]
  15. R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
    [Crossref]
  16. T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
    [Crossref]
  17. X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
    [Crossref] [PubMed]
  18. M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
    [Crossref] [PubMed]
  19. H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
    [Crossref]
  20. M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
    [Crossref] [PubMed]
  21. G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
    [Crossref] [PubMed]
  22. H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
    [Crossref]
  23. A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
    [Crossref]
  24. P. D. Paulson and V. Dutta, “Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells,” Thin Solid Films 370(1–2), 299–306 (2000).
    [Crossref]
  25. S. M. Sze and K. K. Ng, Physics of Semiconductor devices 3rd ed. (Wiley, 2007).
  26. Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
    [Crossref]
  27. J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
    [Crossref]

2016 (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

2015 (3)

W.-O. Seo, D. Kim, and J. Kim, “Flexible CdTe/CdS solar cells on thin glass substrates,” Opt. Express 23(7), A316–A321 (2015).
[Crossref] [PubMed]

G. Yang, D. Kim, and J. Kim, “Self-aligned growth of CdTe photodetectors using a graphene seed layer,” Opt. Express 23(19), A1081–A1086 (2015).
[Crossref] [PubMed]

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

2014 (7)

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
[Crossref] [PubMed]

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

I. M. Dharmadasa, “Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding,” Coatings 4(2), 282–307 (2014).
[Crossref]

Y. Jung, G. Yang, S. Chun, D. Kim, and J. Kim, “Post-growth CdCl₂ treatment on CdTe thin films grown on graphene layers using a close-spaced sublimation method,” Opt. Express 22(S3), A986–A991 (2014).
[Crossref] [PubMed]

2013 (2)

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

2012 (1)

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

2010 (1)

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

2008 (1)

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

2004 (1)

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
[Crossref]

2001 (2)

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

2000 (2)

P. D. Paulson and V. Dutta, “Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells,” Thin Solid Films 370(1–2), 299–306 (2000).
[Crossref]

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

1999 (2)

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999).
[Crossref]

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

1998 (1)

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

1996 (1)

V. Valdna, F. Buschmann, and E. Mellikov, “Conductivity conversion in CdTe layers,” J. Cryst. Growth 161(1–4), 164–167 (1996).
[Crossref]

Abashin, M.

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Aga, R. S.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Al-Jassim, M.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Al-Jassim, M. M.

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

Baek, C. K.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Bätzner, D. L.

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

Bello, I.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Bowen, L.

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

Buschmann, F.

V. Valdna, F. Buschmann, and E. Mellikov, “Conductivity conversion in CdTe layers,” J. Cryst. Growth 161(1–4), 164–167 (1996).
[Crossref]

Cao, Y.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Chen, G.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

Chun, S.

Y. Jung, G. Yang, S. Chun, D. Kim, and J. Kim, “Post-growth CdCl₂ treatment on CdTe thin films grown on graphene layers using a close-spaced sublimation method,” Opt. Express 22(S3), A986–A991 (2014).
[Crossref] [PubMed]

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Collins, W. E.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Creatore, M.

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

Cuniberti, G.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Dai, L.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Davami, K.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Dharmadasa, I. M.

I. M. Dharmadasa, “Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding,” Coatings 4(2), 282–307 (2014).
[Crossref]

Dhere, R. G.

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

Dippo, P. C.

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Durose, K.

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
[Crossref] [PubMed]

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999).
[Crossref]

Dutta, V.

P. D. Paulson and V. Dutta, “Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells,” Thin Solid Films 370(1–2), 299–306 (2000).
[Crossref]

Edwards, P. R.

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Ewan, M.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Ferekides, C. S.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Gao, J. Y.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Gianfrancesco, A.

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Haigh, S. J.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Halliday, D. P.

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Jowhar, D.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Jung, Y.

Kazmerski, L. L.

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

Keuning, W.

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

Kheirabi, N.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Kim, D.

Kim, J.

Kwok, S.-Y.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Lee, C.-S.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Lee, J.-S.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Lee, S.-T.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Leite, M. S.

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Leonard, D.

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

Levi, D. H.

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

Lezec, H. J.

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Li, C.

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Liu, Y.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Lu, Z.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Luo, L.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Lupini, A. R.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Major, J. D.

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
[Crossref] [PubMed]

Marinskiy, D.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Mellikov, E.

V. Valdna, F. Buschmann, and E. Mellikov, “Conductivity conversion in CdTe layers,” J. Cryst. Growth 161(1–4), 164–167 (1996).
[Crossref]

Meyyappan, M.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Morel, D. L.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Moutinho, H. R.

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

Mu, R.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Nie, B.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

Oxley, M. P.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Palekis, V.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Pan, Z.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Parish, C. M.

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

Park, H.

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Paudel, N.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Paudel, N. R.

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

Paulson, P. D.

P. D. Paulson and V. Dutta, “Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells,” Thin Solid Films 370(1–2), 299–306 (2000).
[Crossref]

Peng, R. M.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Pennycook, S. J.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

Pennycook, T. J.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Phillips, L. J.

J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
[Crossref] [PubMed]

Poplawsky, J.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Poplawsky, J. D.

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

Qin, G. G.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Romeo, A.

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

Selvaraj, P.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Seo, W.-O.

Shaygan, M.

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Song, J.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

Steigerwald, A.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Sun, T.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Takahashi, T.

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

Talin, A. A.

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Tetali, B.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Tiwari, A. N.

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

Treharne, R. E.

J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
[Crossref] [PubMed]

Ueda, A.

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

Valdna, V.

V. Valdna, F. Buschmann, and E. Mellikov, “Conductivity conversion in CdTe layers,” J. Cryst. Growth 161(1–4), 164–167 (1996).
[Crossref]

Vignali, C.

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

Viswanathan, V.

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Watanabe, S.

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

Williams, B. L.

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

Wu, X.

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
[Crossref]

Wu, Y.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Xie, X.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Yan, Y.

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Yang, G.

Yang, Q.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

Ye, Y.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Yin, W.

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

You, L. P.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Yu, D. P.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Zapien, J. A.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Zhang, W.

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Zhitenev, N. B.

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

Zhu, R.

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

Zogg, H.

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

Zuo, J.

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

ACS Nano (1)

M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano 8(11), 11883–11890 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (2)

B. L. Williams, J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose, “A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry,” Adv. Energy Mater. 5(21), 1500554 (2015).
[Crossref]

J. D. Poplawsky, N. R. Paudel, C. Li, C. M. Parish, D. Leonard, Y. Yan, and S. J. Pennycook, “Direct imaging of Cl- and Cu-induced short-circuit efficiency changes in CdTe solar cells,” Adv. Energy Mater. 4(15), 1400454 (2014).

Appl. Phys. Lett. (1)

H. Park, G. Yang, S. Chun, D. Kim, and J. Kim, “CdTe microwire-based ultraviolet photodetectors aligned non-uniform electric field,” Appl. Phys. Lett. 103(5), 051906 (2013).
[Crossref]

Coatings (1)

I. M. Dharmadasa, “Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding,” Coatings 4(2), 282–307 (2014).
[Crossref]

CrystEngComm (1)

J. Zhou, G. Chen, B. Nie, J. Zuo, J. Song, L. Luo, and Q. Yang, “Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire,” CrystEngComm 15(34), 6863–6869 (2013).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001).
[Crossref]

J. Appl. Phys. (1)

Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108(4), 044301 (2010).
[Crossref]

J. Cryst. Growth (2)

V. Valdna, F. Buschmann, and E. Mellikov, “Conductivity conversion in CdTe layers,” J. Cryst. Growth 161(1–4), 164–167 (1996).
[Crossref]

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197(3), 733–742 (1999).
[Crossref]

J. Phys. Condens. Matter (1)

R. S. Aga, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, “Photoconductivity of CdTe nanocrystal films in a simple multilayer device structure,” J. Phys. Condens. Matter 20(38), 385206 (2008).
[Crossref]

J. Vac. Sci. Technol. A (2)

H. R. Moutinho, R. G. Dhere, M. M. Al-Jassim, D. H. Levi, and L. L. Kazmerski, “Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films,” J. Vac. Sci. Technol. A 17(4), 1793–1798 (1999).
[Crossref]

H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, “Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films,” J. Vac. Sci. Technol. A 16(3), 1251–1257 (1998).
[Crossref]

Nanoscale (1)

X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012).
[Crossref] [PubMed]

Nature (1)

J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature 511(7509), 334–337 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Chem. Chem. Phys. (1)

M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, “Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector,” Phys. Chem. Chem. Phys. 16(41), 22687–22693 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, “Grain-boundary-enhanced carrier collection in CdTe solar cells,” Phys. Rev. Lett. 112(15), 156103 (2014).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Sol. Energy (1)

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. Romeo, D. L. Bätzner, H. Zogg, C. Vignali, and A. N. Tiwari, “Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells,” Sol. Energy Mater. Sol. Cells 67(1–4), 311–321 (2001).
[Crossref]

Thin Solid Films (2)

P. D. Paulson and V. Dutta, “Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells,” Thin Solid Films 370(1–2), 299–306 (2000).
[Crossref]

C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, “High efficiency CSS CdTe solar cells,” Thin Solid Films 361–362, 520–526 (2000).
[Crossref]

Other (2)

A. McEvoy, T. Markvart, and L. Castañer, Solar Cells: Materials, Manufacture and Operation, in CdTe Thin-Film PV Modules 2nd ed. (Elsevier, 2013).

S. M. Sze and K. K. Ng, Physics of Semiconductor devices 3rd ed. (Wiley, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the graphene-seeded fabrication procedure for the back-gated CdTe/graphene FETs: (a) graphene grown on Cu foil; (b) transfer of graphene onto a SiO2/Si substrate and selective growth of CdTe thin films on graphene; (c) CdCl2 activation process in furnace; (d) electrical measurement setup of the fabricated CdTe FETs.
Fig. 2
Fig. 2 Top-view SEM images of the CdTe surface: (a, b) before CdCl2 treatment; (c, d) after CdCl2 treatment.
Fig. 3
Fig. 3 I-V characteristics from the TLM patterns: (a) before CdCl2 treatment (inset: microscope image of TLM patterns), (b) after CdCl2 treatment; IDS-VDS characteristics at varying VGS from + 30 V to −30 V: (c) before CdCl2 treatment, (d) after CdCl2 treatment, (e) IDS-VGS characteristics and (f) summary of RSh, on/off ratio and field-effect carrier mobility before and after CdCl2 treatment.
Fig. 4
Fig. 4 (a) Schematic of the measurement setup for photoresponse, (b) time-resolved photoresponse at various VGS when the UV light was repeatedly cycled on and off.
Fig. 5
Fig. 5 (a) I-V characteristics (inset: an optical image of our fabricated CdTe photodetector with Cu/Au electrodes) and (b) time-dependent current characteristics under various UV light intensities, (c) close-up of the time-dependent current with experimental data and fitted curves at an intensity of 508 μW/cm2, (d) responsivity as a function of light intensity (inset: photoconductive gain as a function of light intensity).

Metrics