Abstract

Monte Carlo simulations are used to compute the uncertainty associated to light backscattering measurements in turbid waters using the ECO-BB (WET Labs) and Hydroscat (HOBI Labs) scattering sensors. ECO-BB measurements provide an accurate estimate of the particulate volume scattering coefficient after correction for absorption along the short instrument pathlength. For Hydroscat measurements, because of a longer photon pathlength, both absorption and scattering effects must be corrected for. As the standard (sigma) correction potentially leads to large errors, an improved correction method is developed then validated using field inherent and apparent optical measurements carried out in turbid estuarine waters. Conclusions are also drawn to guide development of future short pathlength backscattering sensors for turbid waters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity analysis of volume scattering phase functions

Noah Tuchow, Jennifer Broughton, and Raphael Kudela
Opt. Express 24(16) 18559-18570 (2016)

Monte Carlo simulations of the backscattering measurements for associated uncertainty

Sayoob Vadakke-Chanat, Palanisamy Shanmugam, and Balasubramanian Sundarabalan
Opt. Express 26(16) 21258-21270 (2018)

Scattering error corrections for in situ absorption and attenuation measurements

David McKee, Jacek Piskozub, and Ian Brown
Opt. Express 16(24) 19480-19492 (2008)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
    [Crossref] [PubMed]
  2. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [Crossref]
  3. G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
    [Crossref]
  4. A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,“ AGARD Lecture Series, 3.1.1-3.1.76 (1973).
  5. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40(27), 4885–4893 (2001).
    [Crossref] [PubMed]
  6. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
    [Crossref]
  7. W. H. Slade and E. Boss, “Spectral attenuation and backscattering as indicators of average particle size,” Appl. Opt. 54(24), 7264–7277 (2015).
    [Crossref] [PubMed]
  8. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
    [Crossref] [PubMed]
  9. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36(24), 6057–6067 (1997).
    [Crossref] [PubMed]
  10. D. R. Dana and R. A. Maffione, “Determining the Backward Scattering Coefficient with Fixed-Angle Backscattering Sensors? Revisited, “ in Ocean Optics XVI Conference (2002).
  11. WET Labs ECO BB User’s Guide (BB), Revision AC, 11 Sept. 2007.
  12. E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
    [Crossref] [PubMed]
  13. C. D. Mobley, Light and Water (Academic, 1994).
  14. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Chapter 6: Measuring optical backscattering in water,” in. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface, A.A. Kokhanovsky, ed. (S Praxis Books, 2013).
  15. AC-9 User’s Guide (AC-9), WET Labs Inc., Revision S, June 2008.
  16. Backscattering Sensor Calibration Manual HydroScat-2, HydroScat-4, HydroScat-6, a-Beta and c-Beta. Hydro-Optics, Biology, & Instrumentation Laboratories, Inc., Revision N, Oct. 2008.
  17. HydroSoft 2.9 Software for HOBI Labs Optical Oceanographic Instruments User’s Manual. Hydro-Optics, Biology & Instrumentation Laboratories, Revision H, Feb. 2012.
  18. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
    [Crossref]
  19. M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
    [Crossref]
  20. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
    [Crossref] [PubMed]
  21. M. S. Twardowski and W. E. T. Labs, Inc., 70 Dean Knauss Dr., Narragansett, RI 02882, USA (personal communication, 2014).
  22. D. Dana, Hobi Instrument Services, 12819 SE 38th St. #434, Bellevue, WA 98006, USA (personal communication, 2013).
  23. Backscattering sensor calibration manual HydroScat-2, HydroScat-4, HydroScat-6, a-Beta and c-Beta, Revision N, Hydro-Optics, Biology and Instrumentation Laboratories, Inc, Oct. 2008.
  24. SeaSWIR research project, http://www. http://seaswir.vgt.vito.be/
  25. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  26. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]
  27. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
    [Crossref] [PubMed]
  28. A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
    [Crossref]
  29. P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
    [Crossref]
  30. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting tube absorption meter,” Proc. SPIE 2258, 44–55 (1994).
    [Crossref]
  31. D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
    [Crossref] [PubMed]
  32. D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
    [Crossref]
  33. R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
    [Crossref] [PubMed]
  34. R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
    [Crossref]
  35. J. L. Mueller, C. Davis, R. A. Arnone, R. Frouin, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revision 2, G. S. Fargion and J. L. Mueller, ed. (National Aeronautical and Space Administration, 2000).
  36. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [Crossref] [PubMed]
  37. K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [Crossref]
  38. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov & E. Steeman Nielsen, ed. (Academic, 1974).
  39. D. Segelstein, “The complex refractive index of water,” M.S. Thesis, Missouri U., Kansas City (1981).
  40. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
    [Crossref] [PubMed]
  41. W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47(5), 666–677 (2008).
    [Crossref] [PubMed]
  42. D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
    [Crossref] [PubMed]

2015 (2)

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

W. H. Slade and E. Boss, “Spectral attenuation and backscattering as indicators of average particle size,” Appl. Opt. 54(24), 7264–7277 (2015).
[Crossref] [PubMed]

2014 (2)

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

2012 (2)

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2008 (1)

2007 (2)

2006 (2)

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

2002 (1)

2001 (4)

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40(27), 4885–4893 (2001).
[Crossref] [PubMed]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

1999 (1)

1997 (2)

1994 (1)

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting tube absorption meter,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

1993 (1)

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

1975 (1)

Arnone, R. A.

Astoreca, R.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Babin, M.

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
[Crossref] [PubMed]

Barillé, L.

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

Barnard, A. H.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Boss, E.

W. H. Slade and E. Boss, “Spectral attenuation and backscattering as indicators of average particle size,” Appl. Opt. 54(24), 7264–7277 (2015).
[Crossref] [PubMed]

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[Crossref] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
[Crossref] [PubMed]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40(27), 4885–4893 (2001).
[Crossref] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

Bracher, A.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

Brown, I.

Brown, O. B.

Calzado, V. S.

Chami, M.

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
[Crossref] [PubMed]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Chang, G. C.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

Chylek, P.

Cowles, T. J.

Cunningham, A.

Dana, D. R.

R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36(24), 6057–6067 (1997).
[Crossref] [PubMed]

D. R. Dana and R. A. Maffione, “Determining the Backward Scattering Coefficient with Fixed-Angle Backscattering Sensors? Revisited, “ in Ocean Optics XVI Conference (2002).

Davis, C. O.

De Cauwer, V.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Dicke, T. D.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

Dogliotti, A. I.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Doxaran, D.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
[Crossref] [PubMed]

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
[Crossref] [PubMed]

Dupouy, C.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

Fry, E. S.

Gardner, W. D.

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

Gehnke, S.

Gentili, B.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Gernez, P.

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

Goode, W.

Gordon, H. R.

Gould, R. W.

Herring, S.

Jacobs, M. M.

Khomenko, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting tube absorption meter,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

Knaeps, E.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Korotaev, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Kou, L.

Labrie, D.

Ladner, S.

Lamela, G.

Lerouxel, A.

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

Leymarie, E.

Loisel, H.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Lucas, A.

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Maffione, R. A.

R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36(24), 6057–6067 (1997).
[Crossref] [PubMed]

D. R. Dana and R. A. Maffione, “Determining the Backward Scattering Coefficient with Fixed-Angle Backscattering Sensors? Revisited, “ in Ocean Optics XVI Conference (2002).

Marken, E.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Mazeran, C.

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

McKee, D.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
[Crossref] [PubMed]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Mériaux, X.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Mobley, C. D.

Moore, C. C.

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting tube absorption meter,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

Moore, G.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Morel, A.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Nechad, B.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Neukermans, G.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Park, Y. J.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Pegau, W. S.

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007).
[Crossref] [PubMed]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

Pope, R. M.

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Rhea, W. J.

Röttgers, R.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
[Crossref] [PubMed]

Ruddick, K.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Ruddick, K. G.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Slade, W. H.

Snyder, W. A.

Stamnes, J. J.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

Stavn, R.

Sullivan, J. M.

Sundman, L. K.

Sydor, M.

Tailliez, D.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Taylor, B. B.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

Twardowski, M. S.

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
[Crossref] [PubMed]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40(27), 4885–4893 (2001).
[Crossref] [PubMed]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

Weidemann, A.

Whitmire, A. L.

Wozniak, S. B.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting tube absorption meter,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

Appl. Opt. (14)

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
[Crossref] [PubMed]

R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36(24), 6057–6067 (1997).
[Crossref] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40(27), 4885–4893 (2001).
[Crossref] [PubMed]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
[Crossref] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
[Crossref] [PubMed]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47(5), 666–677 (2008).
[Crossref] [PubMed]

D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48(24), 4663–4675 (2009).
[Crossref] [PubMed]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009).
[Crossref] [PubMed]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
[Crossref] [PubMed]

W. H. Slade and E. Boss, “Spectral attenuation and backscattering as indicators of average particle size,” Appl. Opt. 54(24), 7264–7277 (2015).
[Crossref] [PubMed]

J. Geophys. Res. (3)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111(C5), C05013 (2006).
[Crossref]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dicke, “Spectral particulate and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001).
[Crossref]

J. Geophys. Res. Oceans (1)

P. Gernez, L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas, and D. Doxaran, “Remote sensing of suspended particulate matter in turbid oyster-farming ecosystem,” J. Geophys. Res. Oceans 119(10), 7277–7294 (2014).
[Crossref]

Limnol. Oceanogr. (5)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Woźniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
[Crossref]

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting tube absorption meter,” Proc. SPIE 2258, 44–55 (1994).
[Crossref]

Remote Sens. Environ. (1)

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Other (15)

A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,“ AGARD Lecture Series, 3.1.1-3.1.76 (1973).

C. D. Mobley, Light and Water (Academic, 1994).

M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, and C. C. Moore, “Chapter 6: Measuring optical backscattering in water,” in. Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface, A.A. Kokhanovsky, ed. (S Praxis Books, 2013).

AC-9 User’s Guide (AC-9), WET Labs Inc., Revision S, June 2008.

Backscattering Sensor Calibration Manual HydroScat-2, HydroScat-4, HydroScat-6, a-Beta and c-Beta. Hydro-Optics, Biology, & Instrumentation Laboratories, Inc., Revision N, Oct. 2008.

HydroSoft 2.9 Software for HOBI Labs Optical Oceanographic Instruments User’s Manual. Hydro-Optics, Biology & Instrumentation Laboratories, Revision H, Feb. 2012.

M. S. Twardowski and W. E. T. Labs, Inc., 70 Dean Knauss Dr., Narragansett, RI 02882, USA (personal communication, 2014).

D. Dana, Hobi Instrument Services, 12819 SE 38th St. #434, Bellevue, WA 98006, USA (personal communication, 2013).

Backscattering sensor calibration manual HydroScat-2, HydroScat-4, HydroScat-6, a-Beta and c-Beta, Revision N, Hydro-Optics, Biology and Instrumentation Laboratories, Inc, Oct. 2008.

SeaSWIR research project, http://www. http://seaswir.vgt.vito.be/

D. R. Dana and R. A. Maffione, “Determining the Backward Scattering Coefficient with Fixed-Angle Backscattering Sensors? Revisited, “ in Ocean Optics XVI Conference (2002).

WET Labs ECO BB User’s Guide (BB), Revision AC, 11 Sept. 2007.

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov & E. Steeman Nielsen, ed. (Academic, 1974).

D. Segelstein, “The complex refractive index of water,” M.S. Thesis, Missouri U., Kansas City (1981).

J. L. Mueller, C. Davis, R. A. Arnone, R. Frouin, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revision 2, G. S. Fargion and J. L. Mueller, ed. (National Aeronautical and Space Administration, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic view of the ECO-BB sensor as reproduced using SimulO. (b) Schematic view of the Hydroscat sensors as reproduced using SimulO. Geometry of the virtual objects including the light sources (LED) and detectors and different media characterized by their respective relative refractive index (n); the distances (d) between source and detector axes are 0.058 and 0.070 m, respectively, for the HS-4 and HS-6 sensors. (c) Measured (laboratory experiment) and modelled (SimulO) response curves of Hydroscat sensors.
Fig. 2
Fig. 2 Total absorption (a) and scattering (b) coefficients measured in the Río de la Plata (blue) and Bay of Bourgneuf (black) at 550, 700 and 850 nm and extrapolated at 1020 nm
Fig. 3
Fig. 3 SimulO results obtained for the ECO-BB sensor: (a) Variations of the mean backscattering angle of detected photons as a function of the water scattering coefficient, b in m−1. (b) Standard deviation of the mean backscattering angle. (c) Ratio between the corrected and true β signals. Different colours and symbols, respectively, correspond to different values of absorption coefficients and Fournier-Forand (FF) particulate phase functions. Results from all simulated cases are shown.
Fig. 4
Fig. 4 Variations of the best-fitted Kscat coefficient as a function of the particulate backscattering ratio (bbp/bp) for the HS-4 (a) and HS-6 (b) sensors. The particulate VSF is a Fournier-Forand (FF) with a bbp/bp ratio varying from 0.5 to 5%. Values for different absorption coefficients (total minus pure water contribution, in m−1) are shown in different colours. Cases corresponding to predominantly absorbing waters (anw > bp), low attenuation along instrument pathlength (βmeas/βTrue > 0.9) and unexpected cases (Kscat < 0) were removed from the data set on this plot.
Fig. 5
Fig. 5 Variations of (Kbbanw) as a function of bb, based on SimulO computations, for the HS-4 (a) and HS-6 (b) sensors. Overplot of the best-fitted linear regressions with null intercept. Cases corresponding to predominantly absorbing waters (anw > bp), low attenuation along instrument pathlength (βmeas/βTrue > 0.9) and unexpected cases (Kscat < 0) were removed from the data set on this plot.
Fig. 6
Fig. 6 SimulO results obtained for the HS-4 sensor. (a) Variations of the mean backscattering angle of detected photons as a function of the water scattering coefficient, b in m−1. (b) Standard deviation of the mean backscattering angle as a function of b. (c) Ratio between the corrected (Eq. (11)) and true β signals. Results from all simulated cases are shown.
Fig. 7
Fig. 7 SimulO results obtained for the HS-6 sensor. (a) Variations of the mean backscattering angle of detected photons as a function of the water scattering coefficient, b in m−1. (b) Standard deviation of the mean backscattering angle as a function of b. (c) Ratio between the corrected (Eq. (12)) and true β signals. Results from all simulated cases are shown.
Fig. 8
Fig. 8 (a) Optical closure obtained with the Río de la Plata data set. Plot of Rrs(550), Rrs(700), Rrs(850) and Rrs(1020) computed with Hydrolight using as inputs the bbp values obtained from the standard sigma correction (white points) and new correction (black points) as a function of the Rrs values measured with the Trios (at 550, 700 and 850 nm) and ASD (at 1020 nm) sensors. (b) Optical closure obtained with the Bay of Bourgneuf data set. Plot of Rrs(550), Rrs(700), Rrs(850) and Rrs(1020) computed with Hydrolight using as inputs the bbp values obtained from the standard sigma correction (white points) and new correction (black points) as a function of Rrs measured at the same wavelengths with the Trios sensors. The black lines show the 1:1 linear regression.
Fig. 9
Fig. 9 Spectral variations of the particulate backscattering ratio, in %, measured in the Río de la Plata (left) and Bourgneuf Bay (right). The bbp_s and bbp_n particulate backscattering coefficients were respectively obtained by applying the standard (a-b) and new (c-d) correction methods to HS-4 data.

Tables (1)

Tables Icon

Table 1 Specifications of the ECO-BB (WET Labs), Hydroscat-4 and Hydroscat-6 (HOBI Labs) scattering sensors.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

β cor (124º, a nw =0)= β meas (124º, a nw )×exp(0.0391× a nw ),
β cor =exp( k exp × K bb )× β meas ,
K bb = a nw + K scat × b nw ,
b bp =2π×χ×( β cor β w ).
R rs = L u 0+ ρ sky × L sky 0+ E d 0+ ,
β cor (124º, a nw =0)= β meas (124º, a nw )×exp(0.01635× a nw ).
K scat = 1 b p ×( 1 k exp ×ln( β True β meas ) a nw ).
K bb = a nw + K 1 × b bp
HS-4: K bb = a nw +3.30× b bp , = 0.96
HS-6: K bb = a nw +4.34× b bp , = 0.92.
K bb = a nw +3.30×(2×π×1.08×( β meas β w )),

Metrics