Abstract

We propose a new structure of confocal imaging system based on a direct-view confocal microscope (DVCM) with an electrically tunable lens (ETL). Since it has no mechanical moving parts to scan both the lateral (x-y) and axial (z) directions, the DVCM with an ETL allows for high-speed 3-dimensional (3-D) imaging. Axial response and signal intensity of the DVCM were analyzed theoretically according to the pinhole characteristics. The system was designed to have an isotropic spatial resolution of 20 µm in both lateral and axial direction with a large field of view (FOV) of 10 × 10 mm. The FOV was maintained according to the various focal shifts as a result of an integrated design of an objective lens with the ETL. The developed system was calibrated to have linear focal shift over a range of 9 mm with an applied current to the ETL. The system performance of 3-D volume imaging was demonstrated using standard height specimens and a dental plaster.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally encoded confocal microscopy

G. J. Tearney, R. H. Webb, and B. E. Bouma
Opt. Lett. 23(15) 1152-1154 (1998)

Rapid 3D light-sheet microscopy with a tunable lens

Florian O. Fahrbach, Fabian F. Voigt, Benjamin Schmid, Fritjof Helmchen, and Jan Huisken
Opt. Express 21(18) 21010-21026 (2013)

Rapid wavelength-swept spectrally encoded confocal microscopy

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney
Opt. Express 13(20) 8214-8221 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Leeghim, M. Ahn, and K. Kim, “Novel approach to optical profiler with gradient focal point methods,” Opt. Express 20(21), 23061–23073 (2012).
    [Crossref] [PubMed]
  2. T. Kim, S. H. Kim, D. Do, H. Yoo, and D. Gweon, “Chromatic confocal microscopy with a novel wavelength detection method using transmittance,” Opt. Express 21(5), 6286–6294 (2013).
    [Crossref] [PubMed]
  3. M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035 (1999).
    [Crossref]
  4. H. Cui, N. Dai, W. Liao, and X. Cheng, “Intraoral 3D optical measurement system for tooth restoration,” Optik (Stuttg.) 124(12), 1142–1147 (2013).
    [Crossref]
  5. M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35(9), 2743 (1996).
    [Crossref]
  6. M. S. Jeong and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Opt. Eng. 41(8), 1912 (2002).
    [Crossref]
  7. M. C. Park and S. W. Kim, “Compensation of phase change on reflection in white-light interferometry for step height measurement,” Opt. Lett. 26(7), 420–422 (2001).
    [Crossref] [PubMed]
  8. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994).
    [Crossref] [PubMed]
  9. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  10. G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53(8), 716–718 (1988).
    [Crossref]
  11. A. Nakano, “Spinning-disk confocal microscopy -- a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
    [Crossref] [PubMed]
  12. K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
    [Crossref]
  13. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
    [Crossref] [PubMed]
  14. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
    [Crossref] [PubMed]
  15. M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).
  16. H. J. Tiziani and H. M. Uhde, “Three-dimensional analysis by a microlens-array confocal arrangement,” Appl. Opt. 33(4), 567–572 (1994).
    [Crossref] [PubMed]
  17. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192(2), 217–226 (1998).
    [Crossref]
  18. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [Crossref] [PubMed]
  19. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
    [Crossref] [PubMed]
  20. J. Kim, D. Kang, and D. Gweon, “Spectrally encoded slit confocal microscopy,” Opt. Lett. 31(11), 1687–1689 (2006).
    [Crossref] [PubMed]
  21. J. Liu, J. Tan, H. Bin, and Y. Wang, “Improved differential confocal microscopy with ultrahigh signal-to-noise ratio and reflectance disturbance resistibility,” Appl. Opt. 48(32), 6195–6201 (2009).
    [Crossref] [PubMed]
  22. W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12(21), 5013–5021 (2004).
    [Crossref] [PubMed]
  23. D. R. Lee, Y. D. Kim, D. G. Gweon, and H. Yoo, “Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning,” Opt. Express 21(15), 17839–17848 (2013).
    [Crossref] [PubMed]
  24. M. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14(3), 145–153 (1992).
    [Crossref]
  25. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
    [Crossref]
  26. M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science 157(3786), 305–307 (1967).
    [Crossref] [PubMed]
  27. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y. S. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
    [Crossref] [PubMed]
  28. B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).
    [Crossref] [PubMed]
  29. T. Wilson and S. J. Hewlett, “Optical sectioning strength of the direct-view microscope employing finite-sized pin-hole arrays,” J. Microsc. 163(2), 131–150 (1991).
    [Crossref]
  30. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, 1984).
  31. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [Crossref] [PubMed]
  32. C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(2), 107–117 (1981).
    [Crossref] [PubMed]
  33. Optotune, “Fast electrically tunable lens EL-10-30 series,” http://www.optotune.com/ .

2014 (1)

2013 (3)

2012 (1)

2011 (1)

2009 (1)

2006 (1)

2005 (1)

2004 (1)

2002 (3)

A. Nakano, “Spinning-disk confocal microscopy -- a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[Crossref] [PubMed]

M. S. Jeong and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Opt. Eng. 41(8), 1912 (2002).
[Crossref]

2001 (1)

2000 (1)

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

1999 (1)

M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035 (1999).
[Crossref]

1998 (3)

1996 (1)

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35(9), 2743 (1996).
[Crossref]

1994 (2)

1992 (1)

M. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14(3), 145–153 (1992).
[Crossref]

1991 (1)

T. Wilson and S. J. Hewlett, “Optical sectioning strength of the direct-view microscope employing finite-sized pin-hole arrays,” J. Microsc. 163(2), 131–150 (1991).
[Crossref]

1988 (1)

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53(8), 716–718 (1988).
[Crossref]

1987 (1)

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

1981 (1)

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(2), 107–117 (1981).
[Crossref] [PubMed]

1968 (1)

M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).

1967 (1)

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science 157(3786), 305–307 (1967).
[Crossref] [PubMed]

Ahn, M.

Akinyemi, O.

M. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14(3), 145–153 (1992).
[Crossref]

Bewersdorf, J.

Bin, H.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Boyde, A.

M. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14(3), 145–153 (1992).
[Crossref]

Brakenhoff, G. J.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192(2), 217–226 (1998).
[Crossref]

Browne, M.

M. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14(3), 145–153 (1992).
[Crossref]

Buist, H.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192(2), 217–226 (1998).
[Crossref]

Carlini, A. R.

Cheng, S.

Cheng, X.

H. Cui, N. Dai, W. Liao, and X. Cheng, “Intraoral 3D optical measurement system for tooth restoration,” Optik (Stuttg.) 124(12), 1142–1147 (2013).
[Crossref]

Cheng, Y. S.

Corle, T. R.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53(8), 716–718 (1988).
[Crossref]

Costa, M. F. M.

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35(9), 2743 (1996).
[Crossref]

Cuenca, R.

Cui, H.

H. Cui, N. Dai, W. Liao, and X. Cheng, “Intraoral 3D optical measurement system for tooth restoration,” Optik (Stuttg.) 124(12), 1142–1147 (2013).
[Crossref]

Dai, N.

H. Cui, N. Dai, W. Liao, and X. Cheng, “Intraoral 3D optical measurement system for tooth restoration,” Optik (Stuttg.) 124(12), 1142–1147 (2013).
[Crossref]

de Groot, P.

Deck, L.

Do, D.

Egger, M. D.

M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science 157(3786), 305–307 (1967).
[Crossref] [PubMed]

Fujita, K.

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

Galambos, R.

M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).

Grewe, B. F.

Gweon, D.

Gweon, D. G.

Hadravsky, M.

M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).

Hell, S. W.

Helmchen, F.

Hewlett, S. J.

T. Wilson and S. J. Hewlett, “Optical sectioning strength of the direct-view microscope employing finite-sized pin-hole arrays,” J. Microsc. 163(2), 131–150 (1991).
[Crossref]

Iftimia, N.

Ishida, H.

Ishihara, M.

M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035 (1999).
[Crossref]

Jabbour, J. M.

Jeong, M. S.

M. S. Jeong and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Opt. Eng. 41(8), 1912 (2002).
[Crossref]

Jo, J. A.

Kaneko, T.

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

Kang, D.

Kawata, S.

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

Kim, J.

Kim, K.

Kim, S. H.

Kim, S. W.

M. S. Jeong and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Opt. Eng. 41(8), 1912 (2002).
[Crossref]

M. C. Park and S. W. Kim, “Compensation of phase change on reflection in white-light interferometry for step height measurement,” Opt. Lett. 26(7), 420–422 (2001).
[Crossref] [PubMed]

Kim, T.

Kim, Y. D.

Kino, G. S.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53(8), 716–718 (1988).
[Crossref]

Kosugi, Y.

Lee, D. R.

Leeghim, H.

Liao, W.

H. Cui, N. Dai, W. Liao, and X. Cheng, “Intraoral 3D optical measurement system for tooth restoration,” Optik (Stuttg.) 124(12), 1142–1147 (2013).
[Crossref]

Liu, J.

Maitland, K. C.

Malik, B. H.

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Müller, M.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192(2), 217–226 (1998).
[Crossref]

Nakamura, O.

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

Nakano, A.

A. Nakano, “Spinning-disk confocal microscopy -- a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

Oh, W.

Olsovsky, C.

Otsuki, S.

Oyamada, M.

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

Park, M. C.

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Petran, M.

M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science 157(3786), 305–307 (1967).
[Crossref] [PubMed]

Pick, R.

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Qiu, L.

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Sasaki, H.

M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035 (1999).
[Crossref]

Sheppard, C. J.

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(2), 107–117 (1981).
[Crossref] [PubMed]

Shimizu, M.

Shishkov, M.

Squier, J.

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192(2), 217–226 (1998).
[Crossref]

Takamatsu, T.

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

Tan, J.

Tanaami, T.

Tearney, G.

Tearney, G. J.

Tiziani, H. J.

Tomosada, N.

Uhde, H. M.

van ’t Hoff, M.

Voigt, F. F.

Wang, Y.

Webb, R. H.

White, W.

Wilson, T.

T. Wilson and S. J. Hewlett, “Optical sectioning strength of the direct-view microscope employing finite-sized pin-hole arrays,” J. Microsc. 163(2), 131–150 (1991).
[Crossref]

T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
[Crossref] [PubMed]

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(2), 107–117 (1981).
[Crossref] [PubMed]

Wright, J. M.

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53(8), 716–718 (1988).
[Crossref]

Yoo, H.

Yun, S.

Zhao, W.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53(8), 716–718 (1988).
[Crossref]

Biomed. Opt. Express (2)

Cell Struct. Funct. (1)

A. Nakano, “Spinning-disk confocal microscopy -- a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref] [PubMed]

J. Microsc. (3)

H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192(2), 217–226 (1998).
[Crossref]

T. Wilson and S. J. Hewlett, “Optical sectioning strength of the direct-view microscope employing finite-sized pin-hole arrays,” J. Microsc. 163(2), 131–150 (1991).
[Crossref]

C. J. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124(2), 107–117 (1981).
[Crossref] [PubMed]

JOSA A (1)

M. D. Egger, R. Galambos, M. Hadravsky, and M. Petran, “Tandem-scanning reflected-light microscope,” JOSA A 58(5), 661–664 (1968).

Opt. Commun. (2)

K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[Crossref]

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Opt. Eng. (3)

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng. 35(9), 2743 (1996).
[Crossref]

M. S. Jeong and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Opt. Eng. 41(8), 1912 (2002).
[Crossref]

M. Ishihara and H. Sasaki, “High-speed surface measurement using a nonscanning multiple-beam confocal microscope,” Opt. Eng. 38(6), 1035 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optik (Stuttg.) (1)

H. Cui, N. Dai, W. Liao, and X. Cheng, “Intraoral 3D optical measurement system for tooth restoration,” Optik (Stuttg.) 124(12), 1142–1147 (2013).
[Crossref]

Scanning (1)

M. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14(3), 145–153 (1992).
[Crossref]

Science (1)

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science 157(3786), 305–307 (1967).
[Crossref] [PubMed]

Other (3)

Optotune, “Fast electrically tunable lens EL-10-30 series,” http://www.optotune.com/ .

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, 1984).

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of DVCM. A pinhole array is placed in the source plane (x0-y0) and the generated source array is illuminated to the object plane (x1-y1). The reflected light from the object is split by a beam splitter (BS) and observed in the detector plane(x2-y2). A lens has both roles of objective lens and collector lens. It is assumed that the lens has a normalized pupil function P(ξ,η) having radius of one.
Fig. 2
Fig. 2 Simulation results of axial responses according to pinhole radius (vp) and pinhole pitch (T). Each graph shows the axial responses according to the ratio of pinhole radius to pinhole pitch from 0.1 to 0.5, by 0.1 steps, when (a) T = 4, (b) T = 6, (c) T = 8, (d) T = 10, (e) T = 12 and (f) T = 14
Fig. 3
Fig. 3 Optical sectioning strength and signal intensity according to the ratio of pinhole radius to pinhole pitch when pinhole pitch (T) is fixed as 10. Optical sectioning strength is inversely proportional to the FWHM and normalized when r/T is 0. Signal intensity is proportional to the pinhole area and normalized when r/T is 0.5.
Fig. 4
Fig. 4 Implementation of an ETL/NOL with an objective lens and its focal shift in accordance with changing the radius of the ETL.
Fig. 5
Fig. 5 Schematic of the experimental setup. CL: condenser lens, LP: linear polarizer, PBS: polarizing beam splitter, ETL: electrically tunable lens, QWP: quarter-wave plate.
Fig. 6
Fig. 6 Layout of the designed lens system.
Fig. 7
Fig. 7 (a) Calibration result and (b) axial response of the system.
Fig. 8
Fig. 8 Measurement result of a step height specimen. (a) 3-D reconstructed image and (b) its cross-section profile.
Fig. 9
Fig. 9 Measurement and repeatability test of a stair-step specimen. 3-D reconstructed image in (a) gray scale and (b) color-coded scale. (c) Cross-sectional profile and its (d) repeatability from 50 times measurements.
Fig. 10
Fig. 10 Pictures of a dental plaster model and its 3-D reconstructed images.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S( t 0 , w 0 )=H( t 0 , w 0 )[ comb( t 0 T )comb( w 0 T ) ]
D( t 2 , w 2 )=H( t 2 , w 2 )[ comb( t 2 T )comb( w 2 T ) ],
H(t,w)={ 1 0 t 2 + w 2 v p 2 otherwise ,
I 1 (t,w,u)=S(t,w) 3 | h(t,w,u) | 2 ,
h(t,w,u)= P(ξ',η',u)exp[ i( ξ't+η'w ) ] dξ'dη',
P(ξ',η',u)={ exp[ iu 2 ( ξ ' 2 +η ' 2 ) ] ξ ' 2 +η ' 2 1 0 otherwise ,
I 2 (u)= ( I 1 (t,w,u) 3 | h(t,w,u) | 2 ) D(t,w)dtdw=( | h | 2 3 S )( | h | 2 3 D ).

Metrics