Abstract

Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410nm and 780nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. The electromagnetic field interaction at the boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of nongeometric effects: equivalence between Artmann’s and Tamir’s generalized methods

Liliana I. Perez, Rodolfo M. Echarri, María T. Garea, and Guillermo D. Santiago
J. Opt. Soc. Am. A 28(3) 356-362 (2011)

Surface-plasmon-enhanced multiphoton photoelectric emission from thin silver films

T. Tsang, T. Srinivasan-Rao, and J. Fischer
Opt. Lett. 15(15) 866-868 (1990)

Spatial- and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime

Peng Lang, Xiaowei Song, Boyu Ji, Haiyan Tao, Yinping Dou, Xun Gao, Zuoqiang Hao, and Jingquan Lin
Opt. Express 27(5) 6878-6891 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
    [Crossref] [PubMed]
  2. L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
    [Crossref]
  3. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20(12), 12877–12884 (2012).
    [Crossref] [PubMed]
  4. J. P. S. Fitzgerald, R. C. Word, and R. Könenkamp, “Subwavelength visualization of light in thin film waveguides with photoelectrons,” Phys. Rev. B 89(19), 195129 (2014).
    [Crossref]
  5. J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
    [Crossref]
  6. P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
    [Crossref]
  7. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 6(7), 333–346 (1947).
    [Crossref]
  8. T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
    [Crossref] [PubMed]
  9. H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
    [Crossref]
  10. R. Schlaf, H. Murata, and Z. H. Kafafi, “Work function measurements on indium tin oxide films,” J. Electron Spectrosc. Relat. Phenom. 120(1–3), 149–154 (2001).
    [Crossref]
  11. A. Yariv, Optical Electronics (Saunders College Publishing, 1991).
  12. J. J. Burke, Opt. Sci. Newsletter (U. Ariz.) 5, 66 (1971).
  13. C. R. Pollock, M. Lipson, Integrated Photonics (Springer-Verlag 2003). Appendix A pp. (363–365)
  14. X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
    [Crossref] [PubMed]
  15. A. Gedeon, “Effective thickness of optical waveguides in tunable couplers,” J. Opt. Soc. Am. 64(5), 615–618 (1974).
    [Crossref]
  16. V. Ramaswamy, “Ray model of energy and power flow in anisotropic film waveguides,” J. Opt. Soc. Am. 64(10), 1313–1320 (1974).
    [Crossref]
  17. I. Newton, Opticks (Dover, 1952).
  18. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 6(2), 87–102 (1948).
    [Crossref]
  19. R. H. Renard, “Total reflection: a new evaluation of the Goos–Hänchen Shift,” J. Opt. Soc. Am. 54(10), 1190–1197 (1964).
    [Crossref]
  20. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am. 61(5), 586–592 (1971).
    [Crossref]
  21. K. W. Chiu and J. J. Quinn, “On the Goos-Hanchen Effect: a simple example of time delay scattering process,” Am. J. Phys. 40(12), 1847–1851 (1972).
    [Crossref]
  22. H. Kogelnik, Theory of Optical Waveguides in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988).
  23. H. Kogelnik and H. P. Weber, “Rays, stored energy and power flow in dielectric waveguides,” J. Opt. Soc. Am. 64(2), 174–185 (1974).
    [Crossref]
  24. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]
  25. P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hanchen shift at metal surfaces,” Opt. Commun. 276(2), 206–208 (2007).
    [Crossref]
  26. R. Yang, W. Zhu, and J. Li, “Realization of “trapped rainbow” in 1D slab waveguide with surface dispersion engineering,” Opt. Express 23(5), 6326–6335 (2015).
    [Crossref] [PubMed]
  27. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref] [PubMed]
  28. D. H. Foster, A. K. Cook, and J. U. Nöckel, “Goos-Hänchen induced vector eigenmodes in a dome cavity,” Opt. Lett. 32(12), 1764–1766 (2007).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

J. P. S. Fitzgerald, R. C. Word, and R. Könenkamp, “Subwavelength visualization of light in thin film waveguides with photoelectrons,” Phys. Rev. B 89(19), 195129 (2014).
[Crossref]

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

2013 (1)

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
[Crossref]

2012 (1)

2011 (1)

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

2010 (1)

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

2007 (3)

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hanchen shift at metal surfaces,” Opt. Commun. 276(2), 206–208 (2007).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

D. H. Foster, A. K. Cook, and J. U. Nöckel, “Goos-Hänchen induced vector eigenmodes in a dome cavity,” Opt. Lett. 32(12), 1764–1766 (2007).
[Crossref] [PubMed]

2006 (1)

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
[Crossref] [PubMed]

2001 (1)

R. Schlaf, H. Murata, and Z. H. Kafafi, “Work function measurements on indium tin oxide films,” J. Electron Spectrosc. Relat. Phenom. 120(1–3), 149–154 (2001).
[Crossref]

2000 (1)

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

1977 (1)

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
[Crossref]

1974 (3)

1972 (1)

K. W. Chiu and J. J. Quinn, “On the Goos-Hanchen Effect: a simple example of time delay scattering process,” Am. J. Phys. 40(12), 1847–1851 (1972).
[Crossref]

1971 (2)

1964 (1)

1948 (1)

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 6(2), 87–102 (1948).
[Crossref]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 6(7), 333–346 (1947).
[Crossref]

Almaraz, L.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

Artmann, K.

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 6(2), 87–102 (1948).
[Crossref]

Bauer, M.

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Cao, Z.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
[Crossref] [PubMed]

Chen, C. W.

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hanchen shift at metal surfaces,” Opt. Commun. 276(2), 206–208 (2007).
[Crossref]

Chiang, H. P.

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hanchen shift at metal surfaces,” Opt. Commun. 276(2), 206–208 (2007).
[Crossref]

Chiu, K. W.

K. W. Chiu and J. J. Quinn, “On the Goos-Hanchen Effect: a simple example of time delay scattering process,” Am. J. Phys. 40(12), 1847–1851 (1972).
[Crossref]

Chrisey, D. B.

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Cook, A. K.

Dixon, T.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Fitzgerald, J. P. S.

J. P. S. Fitzgerald, R. C. Word, and R. Könenkamp, “Subwavelength visualization of light in thin film waveguides with photoelectrons,” Phys. Rev. B 89(19), 195129 (2014).
[Crossref]

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
[Crossref]

Fiutowski, J.

Foster, D. H.

Gedeon, A.

Gilmore, C. M.

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 6(7), 333–346 (1947).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 6(7), 333–346 (1947).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Horowitz, B. R.

Horwitz, G.

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Jauernik, S.

Jones, T.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

Kafafi, Z. H.

R. Schlaf, H. Murata, and Z. H. Kafafi, “Work function measurements on indium tin oxide films,” J. Electron Spectrosc. Relat. Phenom. 120(1–3), 149–154 (2001).
[Crossref]

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Kerszulis, J.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kim, H.

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Kjelstrup-Hansen, J.

Klick, A.

Kogelnik, H.

Könenkamp, R.

J. P. S. Fitzgerald, R. C. Word, and R. Könenkamp, “Subwavelength visualization of light in thin film waveguides with photoelectrons,” Phys. Rev. B 89(19), 195129 (2014).
[Crossref]

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
[Crossref]

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

König, T. A. F.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kubo, A.

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

Kushto, G.

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Ledin, P. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Leißner, T.

Lemke, C.

Leung, P. T.

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hanchen shift at metal surfaces,” Opt. Commun. 276(2), 206–208 (2007).
[Crossref]

Li, J.

Liu, X.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
[Crossref] [PubMed]

Mahmoud, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Murata, H.

R. Schlaf, H. Murata, and Z. H. Kafafi, “Work function measurements on indium tin oxide films,” J. Electron Spectrosc. Relat. Phenom. 120(1–3), 149–154 (2001).
[Crossref]

Nöckel, J. U.

Petek, H.

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

Piqué, A.

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

Quinn, J. J.

K. W. Chiu and J. J. Quinn, “On the Goos-Hanchen Effect: a simple example of time delay scattering process,” Am. J. Phys. 40(12), 1847–1851 (1972).
[Crossref]

Ramaswamy, V.

Rempfer, G. F.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

Renard, R. H.

Reynolds, J. R.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Rubahn, H. G.

Saliba, S. D.

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
[Crossref]

Schlaf, R.

R. Schlaf, H. Murata, and Z. H. Kafafi, “Work function measurements on indium tin oxide films,” J. Electron Spectrosc. Relat. Phenom. 120(1–3), 149–154 (2001).
[Crossref]

Seideman, T.

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

Shen, Q.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
[Crossref] [PubMed]

Tamir, T.

Tien, P. K.

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
[Crossref]

P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
[Crossref] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Tsukruk, V. V.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Wang, L.

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

Weber, H. P.

Word, R. C.

J. P. S. Fitzgerald, R. C. Word, and R. Könenkamp, “Subwavelength visualization of light in thin film waveguides with photoelectrons,” Phys. Rev. B 89(19), 195129 (2014).
[Crossref]

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
[Crossref]

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

Yang, R.

Zhang, L.

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

Zhu, P.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
[Crossref] [PubMed]

Zhu, W.

ACS Nano (1)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Am. J. Phys. (1)

K. W. Chiu and J. J. Quinn, “On the Goos-Hanchen Effect: a simple example of time delay scattering process,” Am. J. Phys. 40(12), 1847–1851 (1972).
[Crossref]

Ann. Phys. (2)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 6(7), 333–346 (1947).
[Crossref]

K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 6(2), 87–102 (1948).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (1)

H. Kim, G. Horwitz, G. Kushto, A. Piqué, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys. 88(10), 6021–6025 (2000).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

R. Schlaf, H. Murata, and Z. H. Kafafi, “Work function measurements on indium tin oxide films,” J. Electron Spectrosc. Relat. Phenom. 120(1–3), 149–154 (2001).
[Crossref]

J. Opt. Soc. Am. (5)

Nature (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

P. T. Leung, C. W. Chen, and H. P. Chiang, “Large negative Goos-Hanchen shift at metal surfaces,” Opt. Commun. 276(2), 206–208 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

J. P. S. Fitzgerald, R. C. Word, and R. Könenkamp, “Subwavelength visualization of light in thin film waveguides with photoelectrons,” Phys. Rev. B 89(19), 195129 (2014).
[Crossref]

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B 87(20), 205419 (2013).
[Crossref]

L. Zhang, A. Kubo, L. Wang, H. Petek, and T. Seideman, “Imaging of surface plasmon polariton fields excited at a nanometer-scale slit,” Phys. Rev. B 84(24), 245442 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Solution to causality paradox upon total reflection in optical planar waveguide,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016615 (2006).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
[Crossref]

Ultramicroscopy (1)

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy 110(7), 899–902 (2010).
[Crossref] [PubMed]

Other (5)

I. Newton, Opticks (Dover, 1952).

A. Yariv, Optical Electronics (Saunders College Publishing, 1991).

J. J. Burke, Opt. Sci. Newsletter (U. Ariz.) 5, 66 (1971).

C. R. Pollock, M. Lipson, Integrated Photonics (Springer-Verlag 2003). Appendix A pp. (363–365)

H. Kogelnik, Theory of Optical Waveguides in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Basic waveguide experiment: polarized light is directed towards the milled slit at an incident angle of 60°. Interference between the wave-guided light and the non-scattered incident light generates an interference pattern as indicated
Fig. 2
Fig. 2 Colorized PEEM images of the waveguide illuminated by TE and TM polarized light. Left and center left: two-photon PEEM (λ = 410 nm). Right and center right: three-photon PEEM (λ = 780 nm).
Fig. 3
Fig. 3 Periodograms from the waveguide under 410-nm illumination. Left is TM and right is TE polarization. FFT powers in obtained by normalization to the photoemission yield obtained in the 410-nm TM case. (1, 2) Main propagating modes. (3) Interference of main modes. (4) multiphoton emission artifact peaks.
Fig. 4
Fig. 4 Periodograms of the λ = 780 nm illuminated wave guide. The only significant peak is the single propagating mode.
Fig. 5
Fig. 5 (a) Time averaged electric field in finite element technique simulation using COMSOL multiphysics. (b) Close up of the guiding region supporting two modes. (c) Line graph of the electromagnetic field from the surface of the ITO layer. (d) Periodogram of simulated (red) and experimental (blue) TM polarization for λ = 410nm.
Fig. 6
Fig. 6 (a) Ray model without the Goos-Hänchen shift with a round trip fulfilling the transverse resonance condition. (b) Ray model withthe Goos-Hänchen shift to account for penetration into the substrate.
Fig. 7
Fig. 7 (a) Semi-log line graph of electromagnetic field intensity taken across (b) a COMSOL simulated waveguide with h = 240nm, λ = 780nm, n1 = 1.78, n2 = 1.53, n3 = 1. The graph is used to determine the penetration depth at each interface.
Fig. 8
Fig. 8 Goos-Hänchen shift vs. angle of propagation at 410 nm for both interfaces and polarizations. Solid line (blue) is the theoretical shift at the air interface. Dashed line (red) is the theoretical shift at the glass interface. Squares represent experimentally determined data points at air interface (black) and glass interface (purple). Similarly circles are data points from simulation.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

YPE|| E tot | | 2n ,
E total = E incident + E mode1 + E mode2 .
2 E( r )+ k 0 2 n 2 E( r )=0
2 E x 2 +( k 0 2 n i 2 β 2 )E=0
β= k 0 n i sinθ.
N eff =β λ 2π
x c/ N eff = xsin 60 o +λ c ;
N eff =sin 60 o + λ x ,
h k 0 n 1 cosθ ϕ 1 ϕ 2 =nπ,
Φ TE = tan 1 [ ( n core 2 sin 2 θ n cladding 2 ) 1/2 n core cosθ ];
Φ TM = tan 1[ ( n core 2 sin 2 θ n cladding 2 ) 1/2 n core cosθ n core 2 n cladding 2 ].
z TE =2 ( n core 2 sin 2 θ n cladding 2 ) 1/2 tanθ 1 k 0 ;
z TM = z TE ( n core 2 sin 2 θ n cladding 2 + sin 2 θ1 ) 1 .
z=2xtanθ,
x= 1 γq ;
γ= k 0 ( n core 2 sin 2 θ n cladding 2 ) 1/2 ,
q TE =1;
q TM = n core 2 sin 2 θ n cladding 2 + sin 2 θ1.

Metrics