Abstract

Enhancements up to four orders of magnitude for electric intensity and three orders of magnitude for magnetic intensity are realized in a novel 2D L-shaped nanocavity. This structure makes full use of the dimension confinement, cavity resonance and tip enhancement to increase the electromagnetic intensity. An impedance matching model is developed to design this cavity by regarding the cavity as a load impedance where electromagnetic fields are maximally enhanced when maximum electromagnetic energy is delivered to the load impedance. Our L-shaped nanocavity promises a variety of useful functionalities in sensing, nonlinear spectroscopy and signal processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity

Ping Bai, Ming-Xia Gu, Xing-Chang Wei, and Er-Ping Li
Opt. Express 17(26) 24349-24357 (2009)

Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement

Yan-Hui Deng, Zhong-Jian Yang, and Jun He
Opt. Express 26(24) 31116-31128 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  2. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
    [Crossref] [PubMed]
  3. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
    [Crossref]
  4. C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
    [Crossref] [PubMed]
  5. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  6. M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
    [Crossref] [PubMed]
  7. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
    [Crossref]
  8. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [Crossref]
  9. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [Crossref] [PubMed]
  10. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
    [Crossref] [PubMed]
  11. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  14. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
    [Crossref]
  15. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  16. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [Crossref]
  17. D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2009).
  18. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
    [Crossref] [PubMed]
  19. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
    [Crossref] [PubMed]
  20. Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
    [Crossref]
  21. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
    [Crossref] [PubMed]
  22. R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009).
    [Crossref]
  23. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
    [Crossref] [PubMed]
  24. S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
    [Crossref]
  25. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref] [PubMed]
  26. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
    [Crossref]
  27. Y. Xiang, P. Wang, W. Cai, C.-F. Ying, X. Zhang, and J. Xu, “Plasmonic tamm states: dual enhancement of light inside the plasmonic waveguide,” J. Opt. Soc. Am. B 31, 2769–2772 (2014).
    [Crossref]
  28. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9, 3147–3150 (2009).
    [Crossref] [PubMed]
  29. D. Li and E.-P. Li, “Impedance calculation and equivalent circuits for metal–insulator–metal plasmonic waveguide geometries,” Opt. Lett. 38, 3384–3386 (2013).
    [Crossref] [PubMed]

2014 (3)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Y. Xiang, P. Wang, W. Cai, C.-F. Ying, X. Zhang, and J. Xu, “Plasmonic tamm states: dual enhancement of light inside the plasmonic waveguide,” J. Opt. Soc. Am. B 31, 2769–2772 (2014).
[Crossref]

2013 (3)

D. Li and E.-P. Li, “Impedance calculation and equivalent circuits for metal–insulator–metal plasmonic waveguide geometries,” Opt. Lett. 38, 3384–3386 (2013).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

2012 (2)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

2009 (3)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9, 3147–3150 (2009).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009).
[Crossref]

2008 (3)

S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

2005 (2)

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

2004 (2)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Abushagur, M. A.

Agrawal, G. P.

Albrecht, T.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bellessa, J.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

Brucoli, G.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Cai, W.

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Y. Xiang, P. Wang, W. Cai, C.-F. Ying, X. Zhang, and J. Xu, “Plasmonic tamm states: dual enhancement of light inside the plasmonic waveguide,” J. Opt. Soc. Am. B 31, 2769–2772 (2014).
[Crossref]

Cecchini, M. P.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Chon, H.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Choo, J.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Edel, J. B.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

García de Abajo, F. J.

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9, 3147–3150 (2009).
[Crossref] [PubMed]

Ginzburg, P.

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

Greffet, J.-J.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Hattori, H. T.

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Huang, X.-G.

Hugonin, J.-P.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Ivanov, A. P.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kocabas, S.

S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Laverdant, J.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Lee, S.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Lemaitre, A.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Lheureux, G.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Li, D.

Li, E.-P.

Lin, X.-S.

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

Lu, Z.

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Maier, S. A.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

McComb, D. W.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Miller, D.

S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

Moerner, W.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Orenstein, M.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Pannipitiya, A.

Pohl, D.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9, 3147–3150 (2009).
[Crossref] [PubMed]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2009).

Premaratne, M.

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

Rukhlenko, I. D.

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Senellart, P.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Symonds, C.

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Turek, V. A.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Veronis, G.

S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9, 3147–3150 (2009).
[Crossref] [PubMed]

Wahsheh, R. A.

Wang, L.

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Wang, P.

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

Wiener, A.

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

Xiang, Y.

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Y. Xiang, P. Wang, W. Cai, C.-F. Ying, X. Zhang, and J. Xu, “Plasmonic tamm states: dual enhancement of light inside the plasmonic waveguide,” J. Opt. Soc. Am. B 31, 2769–2772 (2014).
[Crossref]

Xu, J.

Y. Xiang, P. Wang, W. Cai, C.-F. Ying, X. Zhang, and J. Xu, “Plasmonic tamm states: dual enhancement of light inside the plasmonic waveguide,” J. Opt. Soc. Am. B 31, 2769–2772 (2014).
[Crossref]

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Ying, C.

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Ying, C.-F.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Zhang, X.

Y. Xiang, P. Wang, W. Cai, C.-F. Ying, X. Zhang, and J. Xu, “Plasmonic tamm states: dual enhancement of light inside the plasmonic waveguide,” J. Opt. Soc. Am. B 31, 2769–2772 (2014).
[Crossref]

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kocabas, G. Veronis, D. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
[Crossref]

J. Opt. (1)

Y. Xiang, W. Cai, L. Wang, C. Ying, X. Zhang, and J. Xu, “Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides,” J. Opt. 16, 025003 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (4)

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9, 3147–3150 (2009).
[Crossref] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J.-P. Hugonin, J.-J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined tamm plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).
[Crossref] [PubMed]

M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, “Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores,” Nano Lett. 13, 4602–4609 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (5)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

Nature (2)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Other (2)

D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2009).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Closed MIM waveguide and (b) the equivalent transmission line. The waveguide terminal is regarded as a inductance. Γ is the reflection coefficient of the voltage. Comparison of both the real part (c) and imaginary part (d) of reflection coefficients between the transmission line model (solid lines) and the FEM simulation (open circles).
Fig. 2
Fig. 2 (a) Schematic of the L-shaped nanocavity. (b) The equivalent transmission line of the cavity and (c) the simplified shunt circuit.
Fig. 3
Fig. 3 (a) Reflectivity against d and l. The dashed line corresponds to d + l = 499 nm. (b) Comparison between the reflectivity calculated by the transmission line model (solid line) and the one by the FEM simulation (open circles). (c) Magnetic and (d) electric fields distribution along the central axis of the main trunk line. Positions of the stub and the waveguide terminal are represented by the dashed lines, respectively.
Fig. 4
Fig. 4 (a) Magnetic and (b) electric field enhancement inside the cavity. (c) Top view of |E| around the inflection point. (d) Relationship between the curvature radius r and the maximum |E| or |Ey| (inset).
Fig. 5
Fig. 5 (a) Magnetic and (b) electric field enhancement including a quarter-wave transformer. The inset shows the whole structure.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

tanh ( k d W 2 ) = k m ε d k d ε m ,
Z 0 = E y W H z W z = β w ω ε d ε 0 ,
Γ = Z L Z 0 Z L + Z 0 .
Z L = 1 + Γ 1 Γ Z 0 ,
Z L 0 i ω L 0 ,
Z S 1 = Z 0 Z L 0 + i Z 0 tan β 1 Z 0 + i Z L 0 tan β 1 ,
Z in = Z S 1 + Z S 2 .
2 ( d + 1 ) β + 2 ϕ = 2 m π ,
E = 1 i ω ε 0 ε r × H .
E tip = 1 i ω ε 0 ε r ( 1 r H z φ e r H z r e φ ) ,
E tip = 1 i ω ε 0 ε r 1 r H z φ e r .
| E | | E tip | | E y | = 1 r ( a r 2 + b r + c ) .

Metrics