Abstract

We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons. Part of the emitted photons couples to surface plasmon modes sustained by the waveguide geometry. The transducing optical antenna is thus acting as a localized electrical source of surface plasmon polaritons. The integration of electrically–activated optical antennas into a plasmonic architecture mitigates the need for complex coupling scheme and proposes a solution for realizing nanoscale units at the interface between nano-electronics and photonics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction

Baohu Huang, Siping Gao, Yan Liu, Jian Wang, Zhenguo Liu, Yongxin Guo, and Weibing Lu
Opt. Lett. 44(9) 2330-2333 (2019)

Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas
Opt. Express 21(4) 4250-4262 (2013)

Edge scattering of surface plasmons excited by scanning tunneling microscopy

Yang Zhang, Elizabeth Boer-Duchemin, Tao Wang, Benoit Rogez, Geneviève Comtet, Eric Le Moal, Gérald Dujardin, Andreas Hohenau, Christian Gruber, and Joachim R. Krenn
Opt. Express 21(12) 13938-13948 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [Crossref]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  4. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
    [Crossref]
  5. R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
    [Crossref]
  6. P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
    [Crossref] [PubMed]
  7. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
    [Crossref]
  8. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
    [Crossref] [PubMed]
  9. L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20(8), 8710–8717 (2012).
    [Crossref] [PubMed]
  10. K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
    [Crossref]
  11. P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
    [Crossref] [PubMed]
  12. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  13. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
    [Crossref] [PubMed]
  14. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
    [Crossref]
  15. W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
    [Crossref] [PubMed]
  16. J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
    [Crossref]
  17. R. Berndt and J. K. Gimzewski, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
    [Crossref] [PubMed]
  18. Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
    [Crossref]
  19. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
    [Crossref] [PubMed]
  20. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
    [Crossref]
  21. Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
    [Crossref]
  22. C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
    [Crossref] [PubMed]
  23. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
    [Crossref]
  24. M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
    [Crossref]
  25. Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
    [Crossref]
  26. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [Crossref]
  27. K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
    [Crossref]
  28. J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
    [Crossref]
  29. M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
    [Crossref] [PubMed]
  30. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
    [Crossref]
  31. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
    [Crossref]
  32. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
    [Crossref]
  33. S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
    [Crossref]
  34. M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
    [Crossref]
  35. J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
    [Crossref]
  36. M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
    [Crossref]
  37. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
    [Crossref]
  38. M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
    [Crossref]
  39. T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
    [Crossref] [PubMed]
  40. Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
    [Crossref]
  41. B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
    [Crossref]
  42. K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).
  43. E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
    [Crossref] [PubMed]
  44. C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
    [Crossref] [PubMed]
  45. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
    [Crossref] [PubMed]
  46. K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114(12), 126803 (2015).
    [Crossref] [PubMed]
  47. R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2–3), 74–179 (2000).
    [Crossref]
  48. A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
    [Crossref] [PubMed]
  49. Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
    [Crossref]

2016 (1)

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
[Crossref]

2015 (7)

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114(12), 126803 (2015).
[Crossref] [PubMed]

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

2014 (6)

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
[Crossref]

M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
[Crossref]

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

2013 (5)

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

2012 (4)

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20(8), 8710–8717 (2012).
[Crossref] [PubMed]

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

2011 (6)

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
[Crossref]

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

2010 (4)

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

2009 (1)

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

2008 (4)

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

2007 (2)

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2–3), 74–179 (2000).
[Crossref]

1991 (1)

R. Berndt and J. K. Gimzewski, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[Crossref] [PubMed]

1976 (1)

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Akimov, Y. A.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Albrektsen, O.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

Algra, R. E.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Allegrini, M.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

Al-Shamery, K.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Amthor, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Arocas, J.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Atwater, H. A.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Bakkers, E. P. A. M.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Bao, K.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Bar-Joseph, I.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
[Crossref]

Barkelid, M.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Beermann, J.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

Bergman, K.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).

Berndt, R.

R. Berndt and J. K. Gimzewski, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[Crossref] [PubMed]

Berthelot, J.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

Bharadwaj, P.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Biberman, A.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).

Bjork, M. T.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Boer-Duchemin, E.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

Borghs, G.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Bouhelier, A.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Bozhevolnyi, S. I.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Brongersma, M. L.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Brunets, I.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

Bubendorff, J. L.

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Buret, M.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

Cai, W.

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Carloni, L. P.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).

Cazier, N.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

Chan, J.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Chen, L. G.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Chen, Y.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Christoffers, J.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Chu, H. S.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Cohen-Hoshen, E.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
[Crossref]

Colas des Francs, G.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Colombo, C.

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Comtet, G.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

de Abajo, F. J. G.

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

de Waele, R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Dellinger, J.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

Dereux, A.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
[Crossref]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Desiatov, B.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Dong, Z.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Dong, Z. C.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Dos Santos, P.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

Du, W.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Dujardin, G.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

Etzkorn, M.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Fan, P. Y.

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Fedorovich, R. D.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2–3), 74–179 (2000).
[Crossref]

Fischer, J.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Frimmer, M.

M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
[Crossref]

Froidevaux, R.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Fuso, F.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Gao, H. Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Gimzewski, J. K.

R. Berndt and J. K. Gimzewski, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[Crossref] [PubMed]

Girod, S.

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Goh, K. E. J.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Goh, W. P.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Gonzalez, M. U.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

Gonzàlez, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Gosciniak, J.

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
[Crossref]

Grandidier, J.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Grosse, C.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Gruber, C.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Han, Z.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Harris, J. S.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

Hartmann, N.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Hartschuh, A.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Hassan, K.

K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
[Crossref]

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

Hehn, M.

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Hendry, G.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).

Hocevar, M.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Hofling, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Hohenau, A.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Hohenester, U.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Horeis, R.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Hou, J. G.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Huang, K. C. Y.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Huo, Y.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

Jain, A.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

Johansson, P.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Jonsson, F.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Kaasbjerg, K.

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114(12), 126803 (2015).
[Crossref] [PubMed]

Kabakchiev, A.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Kall, M.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

Kern, K.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Kim, N. Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Kouwenhoven, L. P.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Krasavin, A. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Krenn, J. R.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Krogstrup, P.

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Kuhnke, K.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

Lacour, D.

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Lagae, L.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Lambe, J.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

Le Moal, E.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Levy, U.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

Lezec, H. J.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Li, L.

Li, T.

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Luo, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Lutz, T.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Marguet, S.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

Markey, L.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
[Crossref]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Massenot, S.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Mazurski, N.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

McCarthy, S. L.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

Mennemanteuil, M. M.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

Mennemanteuil, M.-M.

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

Meunier, V.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

Miljkovic, V. D.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Montaigne, F.

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Morral, A. F. I.

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Mukherjee, S.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

Naumovets, A. G.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2–3), 74–179 (2000).
[Crossref]

Neutens, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Nijhuis, C. A.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Nitzan, A.

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114(12), 126803 (2015).
[Crossref] [PubMed]

Nordlander, P.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Novotny, L.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

Nygard, J.

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, D.

Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
[Crossref]

Parzefall, M.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

Polman, A.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

Protsenko, I. E.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

Puebla-Hellmann, G.

M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
[Crossref]

Quidant, R.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Radko, I. P.

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Rai, P.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Reimer, M. E.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Renger, J.

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Riel, H.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Rogez, B.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

Ruben, M.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Sainidou, R.

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Sarmiento, T.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Schlickum, U.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Schmid, H.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Schmitz, J.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

Schneider, C.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Schramm, F.

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Seo, M. K.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

Shalem, G.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
[Crossref]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Shegai, T.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Simon, L.

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Smetanin, I. V.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Stolz, A.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

Taniguchi, T.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

Tantussi, F.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

Tao, X.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Tomchuk, P. M.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2–3), 74–179 (2000).
[Crossref]

Troadec, C.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Trugler, A.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

Uskov, A. V.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

Van Dorpe, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

van Kouwen, M. P.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Van Loon, R. V. A.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

van Weert, M. H. M.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

Vardi, Y.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

Wallraff, A.

M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
[Crossref]

Walters, R. J.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

Wang, L.

Wang, T.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

Wang, Z.

Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
[Crossref]

Watanabe, K.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

Weeber, J. C.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

Weeber, J.C.

K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
[Crossref]

Weeber, J.-C.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

Wei, H.

Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
[Crossref]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Xia, W.

Xu, H.

Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
[Crossref]

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Xu, J. J.

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Xu, X. G.

Yamamoto, Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Yang, J. K. W.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Yang, J. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Zhang, C.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Zhang, R.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Zhang, X. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Zhang, Y.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

Zheludev, N. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Zhu, D.

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Zhu, S. N.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Zwillera, V.

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

ACS Photon. (1)

Z. Dong, H. S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2(3), 385–391 (2015).
[Crossref]

Appl. Phys. Lett. (5)

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Appl. Phys. Lett. 91(24), 243102 (2007).
[Crossref]

M.-M. Mennemanteuil, J. Dellinger, M. Buret, G. Colas des Francs, and A. Bouhelier, “Pre-determining the location of electromigrated gaps by nonlinear optical imaging,” Appl. Phys. Lett. 105(2), 021101 (2014).
[Crossref]

M. Frimmer, G. Puebla-Hellmann, A. Wallraff, and L. Novotny, “The role of titanium in electromigrated tunnel junctions,” Appl. Phys. Lett. 105(22), 221118 (2014).
[Crossref]

J. Appl. Phys. (1)

K. Hassan, J.C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys. 110(2), 023106 (2011).
[Crossref]

J. Nanophoton. (1)

M. E. Reimer, M. P. van Kouwen, M. Barkelid, M. Hocevar, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, M. T. Bjork, H. Schmid, H. Riel, L. P. Kouwenhoven, and V. Zwillera, “Single photon emission and detection at the nanoscale utilizing semiconductor nanowires,” J. Nanophoton. 5(1), 053502 (2011).
[Crossref]

J. Opt. Soc. Am. B. (1)

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J. C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B. 29(2), 226 (2012).
[Crossref]

J. Phys. Chem. C (1)

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber-gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Laser Photon. Rev. (1)

Z. Wang, H. Wei, D. Pan, and H. Xu, “Controlling the radiation direction of propagating surface plasmons on silver nanowires,” Laser Photon. Rev. 8(4), 596–601 (2014).
[Crossref]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Nano Lett. (12)

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref] [PubMed]

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13(9), 4257–4262 (2013).
[Crossref] [PubMed]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14(5), 2330–2338 (2014).
[Crossref] [PubMed]

Z. Han, I. P. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, and S. I. Bozhevolnyi, “On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides,” Nano Lett. 15(1), 476–480 (2015).
[Crossref]

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas des Francs, and A. Bouhelier, “Spontaneous hot-electron light emission from electron-fed optical antennas,” Nano Lett. 15(9), 5811–5818 (2015).
[Crossref] [PubMed]

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

P. Y. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygard, A. F. I. Morral, and M. L. Brongersma, “An electrically-driven GaAs nanowire surface plasmon source,” Nano Lett. 12(9), 4943–4947 (2012).
[Crossref] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

C. Grosse, A. Kabakchiev, T. Lutz, R. Froidevaux, F. Schramm, M. Ruben, M. Etzkorn, U. Schlickum, K. Kuhnke, and K. Kern, “Dynamic control of plasmon generation by an individual quantum system,” Nano Lett. 14(10), 5693–5697 (2014).
[Crossref] [PubMed]

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16(1), 748–752 (2016).
[Crossref]

Nanotech. (2)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotech. 22(17), 175201 (2011).
[Crossref]

S. Girod, J. L. Bubendorff, F. Montaigne, L. Simon, D. Lacour, and M. Hehn, “Real time atomic force microscopy imaging during nanogap formation by electromigration,” Nanotech. 23(36), 365302 (2012).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hofling, “An electrically pumped polariton laser,” Nature 497(7449), 348–352 (2013).
[Crossref] [PubMed]

Nature Mater. (1)

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon based electrical source of surface plasmon polaritons,” Nature Mater. 9(1), 21–25 (2010).
[Crossref]

Nature Nanotech. (1)

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nature Nanotech. 10(10), 1058 (2015).
[Crossref]

Nature Photon. (5)

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nature Photon. 9(9), 582 (2015).
[Crossref]

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nature Photon. 4(1), 50–54 (2010).
[Crossref]

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nature Photon. 8(3), 244–249 (2014).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow–threshold electrically pumped quantum–dot photonic–crystal nanocavity laser,” Nature Photon. 5(5), 297–300 (2011).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nature Photon. 2(11), 684–687 (2008).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2–3), 74–179 (2000).
[Crossref]

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Phys. Rev. B (2)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[Crossref]

Phys. Rev. Lett. (5)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref] [PubMed]

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

R. Berndt and J. K. Gimzewski, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67(27), 3796–3799 (1991).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

K. Kaasbjerg and A. Nitzan, “Theory of light emission from quantum noise in plasmonic contacts: above-threshold emission from higher-order electron-plasmon scattering,” Phys. Rev. Lett. 114(12), 126803 (2015).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

Sci. Rep. (1)

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Other (1)

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network-on-chip design (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scanning electron micrograph of an electromigrated gold nanowire with its connected electrodes fabricated on top of a dielectric-loaded surface plasmon waveguide (DL-SPPW). The DLSPPW is constituted of an underlying 0.8 μm wide Au strip coated with a 500 nm wide SiOx waveguide. The gold is colored in yellow and the SiOx in blue (the glass substrate is kept in gray). When electrically activated, the electromigrated tunnel junction acts as an electron-fed optical gap antenna. (b) Output characteristics of the tunneling gap antenna measured just after electromigration. The size of the gap after electromigration is initially commensurate to sustain a large tunnel current at room temperature. Under large bias polarity, the gap eventually degrades after continuous operation as shown in the inset of (a). (c) and (d) are the electron micrograph and corresponding output characteristics for a 2 μm wide DLSPPW base, respectively. The insert in (c) represents a cross-sectional description of the different layers of the device.
Fig. 2
Fig. 2 (a) SEM image of the entire DLSPPW placed on a 2 μm-wide Au strip. The connected electrodes and antenna feedgap are readily observed on the right hand side of the device. (b) Distribution of the light in the device when the antenna is polarized with a bias of 1 V and a driving current of 50 μA. Emission at the feedgap and various surface plasmon signatures are detected including edge and DLSPPW end-face scattering. This picture was taken using an electron multiplier gain of 255 for the CCD camera. (c) Angular distribution of the radiation emitted in the glass substrate. The essential of the emission is concentrated in the signature of the plasmon mode. kx/k0 and ky/k0 are the projected wavevectors along the x and y directions respectively, with ki/k0=n sinθ ≤N.A, where i = x, y, n is the refractive index of the substrate, θ is the angle with respect to the normal of the interface, and N.A. is the numerical aperture of the objective.
Fig. 3
Fig. 3 (a) 3D Finite-element simulation of the intensity of the electrical field inside the structure. (b) Sectional view of the 3D simulation taken in the middle of the SiOx layer. A dipole emitting at 850 nm mimics the electron-fed antenna. Logarithmic color scale. (c) Two-dimensional distribution of the gap plasmon mode confined by the Au interfaces in the SiOx layer. (d) Two-dimensional distribution of the mode supported by the DLSPPW. For (c) and (d) the color scales are linear.
Fig. 4
Fig. 4 (a) The red curve is the spectrum emitted by the electron-fed antenna. The blue curve is acquired at the entrance of the DLSPPW and the green curve near the end of the DLSPPW. The dotted green curve is the spectrum measured at the beginning of the waveguide multiplied by the plasmon attenuation resulting from the propagation in the DLSPPW (see Fig. 4(b)). All spectra are normalized by the quantum efficiency of the detector and are corrected for etalon effect. An electron multiplier gain of 255 was used for the CCD camera equipping the spectrometer. (b) Calculated wavelength-dependent propagation length of the DLSPPW mode. The finite width of the Au strip limits the propagation length for longer wavelengths. (c) The red curve is the normalized spectrum of the plasmonic mode calculated by dividing the curve measured at the entrance of the DLSPPW by the wavelength content emitted by the antenna. This spectrum features a number of resonances peaks resulting from Fabry-Pérot interferences. The blue curve represents the calculated transmission of a Fabry-Pérot cavity with an effective index equal to the calculated effective index of the gap mode (see Fig. 4(d)) and an effective length of 920 nm (corresponding to the distance between the antenna feedgap and the drain electrode). (d) Calculated effective indices of the gap mode (red curve) and the DLSPPW mode (blue curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = [ 1 + 4 R ( 1 R ) 2 sin 2 ( δ 2 ) ] 1
R = n eff gap n eff DLSPPW n eff gap + n eff DLSPPW .

Metrics