Abstract

We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical strain for monitoring of concrete failure mechanism with discontinuity

Debasis Deb and Sudipta Bhattacharjee
Appl. Opt. 54(35) 10409-10417 (2015)

High spatial resolution distributed fiber strain sensor based on phase-OFDR

Jiong Li, Jiulin Gan, Zhishen Zhang, Xiaobo Heng, Changsheng Yang, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27913-27922 (2017)

Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars

Xiaodong Zeng, Xiaoyi Bao, Chia Yee Chhoa, Theodore W. Bremner, Anthony W. Brown, Michael D. DeMerchant, Graham Ferrier, Alexander L. Kalamkarov, and Anastasis V. Georgiades
Appl. Opt. 41(24) 5105-5114 (2002)

References

  • View by:
  • |
  • |
  • |

  1. W. E. Hassebroek and A. B. Waters, “Advancements through 15 years of fracturing,” J. Pet. Technol. 16(07), 760–764 (1964).
    [Crossref]
  2. K. G. Nolte, “Evolution of hydraulic fracturing design and evaluation,” in Reservoir Stimulation, 3rd ed., M. J. Economides and K. G. Nolte, eds. (Wiley, 2000).
  3. Ground Water Protection Council, Modern Shale Gas Development in the United States: A Primer (U.S. Department of Energy, Office of Fossil Energy, 2009).
  4. B. Bahorich, J. E. Olson, and J. Holder, “Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments,” in SPE Annual Technical Conference and Exhibition, (Society of Petroleum Engineers, 2012), paper 160197.
    [Crossref]
  5. J. Groenenboom and D. B. van Dam, “Monitoring hydraulic fracture growth: laboratory experiments,” Geophysics 65(2), 603–611 (2000).
    [Crossref]
  6. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
    [Crossref]
  7. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.
  8. R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
    [Crossref]
  9. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed high-temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett. 37(6), 1064–1066 (2012).
    [Crossref] [PubMed]
  10. T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
    [Crossref] [PubMed]
  11. G. Rodríguez, J. R. Casas, and S. Villaba, “Cracking assessment in concrete structures by distributed optical fiber,” Smart Mater. Struct. 24(3), 035005 (2015).
    [Crossref]
  12. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [Crossref]
  13. M. A. Farahani and T. Gogolla, “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing,” J. Lightwave Technol. 17(8), 1379–1391 (1999).
    [Crossref]
  14. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  15. F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
    [Crossref]
  16. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  17. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref] [PubMed]
  18. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]

2015 (1)

G. Rodríguez, J. R. Casas, and S. Villaba, “Cracking assessment in concrete structures by distributed optical fiber,” Smart Mater. Struct. 24(3), 035005 (2015).
[Crossref]

2012 (2)

2010 (1)

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

2009 (1)

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

2008 (2)

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

2005 (1)

2000 (1)

J. Groenenboom and D. B. van Dam, “Monitoring hydraulic fracture growth: laboratory experiments,” Geophysics 65(2), 603–611 (2000).
[Crossref]

1999 (1)

1998 (1)

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

1964 (1)

W. E. Hassebroek and A. B. Waters, “Advancements through 15 years of fracturing,” J. Pet. Technol. 16(07), 760–764 (1964).
[Crossref]

Bahorich, B.

B. Bahorich, J. E. Olson, and J. Holder, “Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments,” in SPE Annual Technical Conference and Exhibition, (Society of Petroleum Engineers, 2012), paper 160197.
[Crossref]

Barton, J. S.

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Briffod, F.

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

Casas, J. R.

G. Rodríguez, J. R. Casas, and S. Villaba, “Cracking assessment in concrete structures by distributed optical fiber,” Smart Mater. Struct. 24(3), 035005 (2015).
[Crossref]

Chen, K. P.

Chen, R.

Chen, T.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Dickerson, B. D.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Farahani, M. A.

Froggatt, M.

Froggatt, M. E.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

Gifford, D.

Gifford, D. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

Glisic, B.

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

Gogolla, T.

Groenenboom, J.

J. Groenenboom and D. B. van Dam, “Monitoring hydraulic fracture growth: laboratory experiments,” Geophysics 65(2), 603–611 (2000).
[Crossref]

Hassebroek, W. E.

W. E. Hassebroek and A. B. Waters, “Advancements through 15 years of fracturing,” J. Pet. Technol. 16(07), 760–764 (1964).
[Crossref]

He, Z.

Holder, J.

B. Bahorich, J. E. Olson, and J. Holder, “Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments,” in SPE Annual Technical Conference and Exhibition, (Society of Petroleum Engineers, 2012), paper 160197.
[Crossref]

Hotate, K.

Inaudi, D.

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

Jewart, C.

Jones, B. J.

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

Kreger, S. T.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

MacPherson, W. N.

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

Maier, R. R.

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

Maklad, M.

McCulloch, S.

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

Mizuno, Y.

Moore, J.

Nikles, M.

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

Olson, J. E.

B. Bahorich, J. E. Olson, and J. Holder, “Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments,” in SPE Annual Technical Conference and Exhibition, (Society of Petroleum Engineers, 2012), paper 160197.
[Crossref]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Ravet, F.

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

Rodríguez, G.

G. Rodríguez, J. R. Casas, and S. Villaba, “Cracking assessment in concrete structures by distributed optical fiber,” Smart Mater. Struct. 24(3), 035005 (2015).
[Crossref]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Sang, A. K.

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

Soller, B.

Swinehart, P. R.

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

van Dam, D. B.

J. Groenenboom and D. B. van Dam, “Monitoring hydraulic fracture growth: laboratory experiments,” Geophysics 65(2), 603–611 (2000).
[Crossref]

Villaba, S.

G. Rodríguez, J. R. Casas, and S. Villaba, “Cracking assessment in concrete structures by distributed optical fiber,” Smart Mater. Struct. 24(3), 035005 (2015).
[Crossref]

Wang, Q.

Waters, A. B.

W. E. Hassebroek and A. B. Waters, “Advancements through 15 years of fracturing,” J. Pet. Technol. 16(07), 760–764 (1964).
[Crossref]

Wolfe, M.

Zhang, B.

Zou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Geophysics (1)

J. Groenenboom and D. B. van Dam, “Monitoring hydraulic fracture growth: laboratory experiments,” Geophysics 65(2), 603–611 (2000).
[Crossref]

IEEE Sens. J. (2)

A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J. 8(7), 1375–1380 (2008).
[Crossref]

F. Ravet, F. Briffod, B. Glisic, M. Nikles, and D. Inaudi, “Submillimeter crack detection with brillouin-based fiber-optic sensors,” IEEE Sens. J. 9(11), 1391–1396 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Pet. Technol. (1)

W. E. Hassebroek and A. B. Waters, “Advancements through 15 years of fracturing,” J. Pet. Technol. 16(07), 760–764 (1964).
[Crossref]

Meas. Sci. Technol. (1)

R. R. Maier, W. N. MacPherson, J. S. Barton, S. McCulloch, and B. J. Jones, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Smart Mater. Struct. (1)

G. Rodríguez, J. R. Casas, and S. Villaba, “Cracking assessment in concrete structures by distributed optical fiber,” Smart Mater. Struct. 24(3), 035005 (2015).
[Crossref]

Other (4)

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE42.

K. G. Nolte, “Evolution of hydraulic fracturing design and evaluation,” in Reservoir Stimulation, 3rd ed., M. J. Economides and K. G. Nolte, eds. (Wiley, 2000).

Ground Water Protection Council, Modern Shale Gas Development in the United States: A Primer (U.S. Department of Energy, Office of Fossil Energy, 2009).

B. Bahorich, J. E. Olson, and J. Holder, “Examining the effect of cemented natural fractures on hydraulic fracture propagation in hydrostone block experiments,” in SPE Annual Technical Conference and Exhibition, (Society of Petroleum Engineers, 2012), paper 160197.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Photograph of concrete cubes during the casting process, (b) the schematic sketch of the optical fiber embedded in a concrete cube, and (c) photograph of the fiber-embedded concrete cube after the curing.
Fig. 2
Fig. 2 Distributed axial strain evolution of the embedded optical fibers in two concrete cubes. Different methods to induce the breakdown were employed: (a) directly induced breakdown, and (b) delayed breakdown.
Fig. 3
Fig. 3 The strain evolution with time at a selected local point before the breakdown. The final stage of the strain growth is fitted by an exponential curve in red.
Fig. 4
Fig. 4 Reconstructed strain fields of Sample 1 in 2D (a-c) and 3D (d-f) formats under different pressure conditions: 810 psi (a and d), 1306 psi (b and e), and 1550 psi (c and f). Color bar indicates the axial strain (µε) in the optical fiber and localized strong strain regions are approximately highlighted with dashed lines.
Fig. 5
Fig. 5 Reconstructed strain fields of Sample 2 in 2D (a-c) and 3D (d-f) formats under different pressure conditions: 1330 psi (a and d), 1441 psi-1min (b and e), and 1441 psi-22 min (c and f). Color bar indicates the axial strain (µε) in the optical fiber and localized strong strain regions are approximately highlighted with dashed lines.
Fig. 6
Fig. 6 Strain field images in 2D (a) and 3D (b) format, and (c) the photo of the actual concrete Sample 1 after the breakdown. The angle of view for 3D image is not the same as Fig. 4 for better demonstration of the fracturing feature. Color bar indicates the axial strain (µε) in the optical fiber.
Fig. 7
Fig. 7 Strain field images in 2D (a) and 3D (b) format, and (c) the photo of the actual concrete Sample 2 after the breakdown. The angle of view for 3D image is the same as Fig. 5. Color bar indicates the axial strain (µε) in the optical fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L max = c τ d 4n ,ΔL= c 2nΔ f sweep .
Δν ν = K T ΔT+ K ε Δε,

Metrics