Abstract

We demonstrate the strong coupling of dye molecules to surface plasmon polaritons (SPPs) excited in the Kretschmann geometry and propagating at the interface of silver and dye-doped polymer. The dispersion curve of such a system, studied in the reflectometry experiments, is split into three branches and demonstrates an avoided crossing – the signature of a strong coupling. We have further studied the excitation spectra of the dye emission and found that the positions of the excitation peaks have a good match with the points in the dispersion curve determined by the reflectometry. At the same time, the analysis of the spectra of the plasmon-mediated spontaneous emission, decoupled to the prism and acquired at multiple collection angles, has resulted in a quite different dispersion curve exhibiting a non-trivial splitting into multiple branches. This suggests that the same plasmonic environment couples differently to absorbing and emitting dye molecules.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directional emission of rhodamine 6G on top of a silver grating

E. K. Tanyi, S. Mashhadi, S. D. Bhattacharyya, T. Galfsky, V. Menon, E. Simmons, V. A. Podolskiy, N. Noginova, and M. A. Noginov
Opt. Lett. 43(11) 2668-2671 (2018)

Absorption enhancement of molecules in the weak plasmon–exciton coupling regime

Sinan Balci, Ertugrul Karademir, Coskun Kocabas, and Atilla Aydinli
Opt. Lett. 39(17) 4994-4997 (2014)

Surface plasmon coupled emission using conjugated light-emitting polymer films [Invited]

Hong Yoon, Stefan A. Maier, Donal D. C. Bradley, and Paul N. Stavrinou
Opt. Mater. Express 1(6) 1127-1138 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
    [Crossref]
  2. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
    [Crossref] [PubMed]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  4. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  5. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
    [Crossref] [PubMed]
  6. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, Taylor & Francis Group, 2011), pp. 293.
  7. D. Maystre, Electromagnetic surface modes, edited by A. D. Boardman (Wiley, 1982), pp. 661–724.
  8. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [Crossref] [PubMed]
  9. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  10. J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
    [Crossref] [PubMed]
  11. F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
    [Crossref] [PubMed]
  12. A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
    [Crossref] [PubMed]
  13. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  14. V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
    [Crossref]
  15. I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
    [Crossref]
  16. Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
    [Crossref]
  17. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
    [Crossref] [PubMed]
  18. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
    [Crossref] [PubMed]
  19. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [Crossref]
  20. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref] [PubMed]
  21. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
    [Crossref] [PubMed]
  22. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
    [Crossref] [PubMed]
  23. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
    [Crossref] [PubMed]
  24. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref] [PubMed]
  25. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [Crossref] [PubMed]
  26. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).
  27. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
    [Crossref] [PubMed]
  28. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [Crossref] [PubMed]
  29. P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
    [Crossref] [PubMed]
  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Vol. 111, pp. 136.
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [Crossref] [PubMed]
  33. D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
    [Crossref]
  34. C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
    [Crossref]
  35. C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
    [Crossref]
  36. S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
    [Crossref] [PubMed]
  37. V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
    [Crossref]
  38. M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
    [Crossref]

2015 (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

2014 (1)

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

2013 (4)

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[Crossref] [PubMed]

2012 (1)

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

2011 (1)

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

2010 (3)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

2008 (4)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

2007 (4)

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

2006 (2)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

2004 (2)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
[Crossref] [PubMed]

2000 (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

1999 (1)

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

1991 (1)

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

1989 (1)

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

1983 (2)

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

1982 (1)

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

1974 (1)

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Adegoke, J. A.

Agranovich, V. M.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Armitage, A.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Bahoura, M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Barnakov, Y. A.

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bellessa, J.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Bonnand, C.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Bradley, D.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Brecha, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Bréhier, A.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Brillante, A.

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Canaguier-Durand, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Carmichael, H. J.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Cerullo, G.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cirmi, G.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

De Re, E.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Deleporte, E.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Devaux, E.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Ebbesen, T. W.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Fainman, Y.

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Gartstein, Y. N.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

Genet, C.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

George, J.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Götzinger, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Goy, P.

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Gross, M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

Guebrou, S. A.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hakala, T. K.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Haroche, S.

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Hohenester, U.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

Homeyer, E.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hutchison, J. A.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaluzny, Y.

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Kimble, H. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Koponen, M. A.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Lauret, J. S.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Lee, W. D.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

Lehn, J.-M.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Leipold, D.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Li, H.

Lidzey, D.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Lienau, C.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Liscio, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Malshukov, A. G.

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

Mayy, M.

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Mobius, D.

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Murakoshi, K.

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Nagasawa, F.

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Narimanov, E. E.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nezhad, M.

Noginov, M. A.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Palermo, V.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Pang, Y.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Parashkov, R.

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Plenet, J. C.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Pockrand, I.

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

Podolskiy, V. A.

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Pomraenke, R.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Pustovit, V. N.

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

Raimond, J. M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

Raizen, M. G.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Rempe, G.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

Reynolds, K.

Ritzo, B. A.

Runge, E.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Samorì, P.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Schwartz, T.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Shahbazyan, T. V.

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Skolnick, M.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Symonds, C.

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

Takase, M.

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Tetz, K.

Thompson, R. J.

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Toppari, J. J.

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Tumkur, T. U.

Vasa, P.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Virgili, T.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Walker, S.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

Wang, W.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wilhelms, N.

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Wurtz, G. A.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[Crossref] [PubMed]

ACS Nano (1)

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25(17), 2481–2485 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A. Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn, and T. W. Ebbesen, “Thermodynamics of Molecules Strongly Coupled to the Vacuum Field,” Angew. Chem. Int. Ed. Engl. 52(40), 10533–10536 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Symonds, J. Bellessa, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Emission of hybrid organic-inorganic exciton/plasmon mixed states,” Appl. Phys. Lett. 90(9), 091107 (2007).
[Crossref]

J. Chem. Phys. (1)

I. Pockrand, A. Brillante, and D. Mobius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289 (1982).
[Crossref]

J. Phys. Chem. Lett. (1)

F. Nagasawa, M. Takase, and K. Murakoshi, “Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps,” J. Phys. Chem. Lett. 5(1), 14–19 (2014).
[Crossref] [PubMed]

Nano Lett. (3)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[Crossref]

Nature (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

C. Symonds, C. Bonnand, J. C. Plenet, A. Bréhier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon-exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Opt. Commun. (1)

V. M. Agranovich and A. G. Malshukov, “Surface polariton spectra if the resonance with the transition layer vibrations exist,” Opt. Commun. 11(2), 169–171 (1974).
[Crossref]

Opt. Express (3)

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 1–5 (2008).

V. N. Pustovit and T. V. Shahbazyan, “Resonance Energy Transfer near Metal Nanostructures Mediated by Surface Plasmons,” Phys. Rev. B 83(8), 085427 (2011).
[Crossref]

M. A. Koponen, U. Hohenester, T. K. Hakala, and J. J. Toppari, “Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift,” Phys. Rev. B 88(8), 085425 (2013).
[Crossref]

Phys. Rev. Lett. (10)

S. A. Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Gartstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108(6), 066401 (2012).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities,” Phys. Rev. Lett. 82(16), 3316–3319 (1999).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong Coupling between Localized Plasmons and Organic Excitons in Metal Nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983).
[Crossref]

Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance,” Phys. Rev. Lett. 51(13), 1175–1178 (1983).
[Crossref]

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989).
[Crossref] [PubMed]

G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67(13), 1727–1730 (1991).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Science (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Other (4)

M. A. Noginov and V. A. Podolskiy, eds., Tutorials in Metamaterials, Series in Nano-optics and Nanophotonics (CRC Press, Taylor & Francis Group, 2011), pp. 293.

D. Maystre, Electromagnetic surface modes, edited by A. D. Boardman (Wiley, 1982), pp. 661–724.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Vol. 111, pp. 136.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Solid black line – dispersion curve for the glass/Ag/PMMA structure, calculated using Eq. (1). Red markers – dispersion curve calculated using modified Fresnel equations for the glass/Ag/dye:PMMA structure with two Lorentzian bands modeling the absorption spectrum of the dye. Inset: Schematic of the Kretschmann geometry used to excite SPPs. (b) Absorption spectrum of the dye:PMMA layer modeled by a combination of two Lorentz oscillators. (c) Color maps of reflectance calculated using modified Fresnel equations [30] and plotted for different frequencies and incidence angles, for the glass/Ag/PMMA structure (top panel) and the glass/Ag/dye:PMMA structure (bottom panel).
Fig. 2
Fig. 2 (a) Angular reflectance profiles of the R6G:PMMA/Ag/prism sample, measured at three different wavelengths. (b) Corresponding reflectance spectra measured at two different angles of incidence. Inset: Schematic of the sample and the Kretschman geometry setup.
Fig. 3
Fig. 3 (a) Experimental absorption spectrum of the R6G:PMMA film on glass. (b) Points forming the dispersion curve obtained from spectral (black) and angular (red) reflectance measurements of the glass prism/Ag/dye:PMMA sample, plotted versus the incidence angle (c) Solid black markers - Dispersion curve obtained from spectral reflectance measurements (same as in Fig. 3b) plotted versus the wavevector k. Solid black line and hollow red markers – same as in Fig. 1a.
Fig. 4
Fig. 4 (a) Red trace - Excitation spectrum of R6G emission collected at λ = 580 nm and excited at θ = 71.7 degrees. Corresponding Gaussian fits are shown. Dotted black line – Excitation spectrum of R6G emission, excited and collected from the back of the prism (not in the Kretschmann geometry). Inset: Schematic of the setup used to record the excitation spectra. (b) Black markers – dispersion curve obtained in the reflectance experiment (from Fig. 3b). Red markers – the points from the excitation spectra of R6G emission, collected at three different angles as shown in the inset.
Fig. 5
Fig. 5 (Left) Schematic of the setup used to record the emission spectra; (Right) R6G emission measured in the R6G:PMMA/Ag/prism sample at varying collection angles. Solid black line – R6G emission collected from the back of the prism.
Fig. 6
Fig. 6 (a) (Left) Black hollow squares – dispersion measured in the reflectometry experiment (from Fig. 3b); blue (1), red (2) and green (3) circles – branches of the dispersion curve obtained from the emission spectra; (Right) absorption and emission spectra of the R6G:PMMA film on a glass substrate. (b) Dispersion curve of Fig. 6a, obtained from the emission spectra, plotted as a function of wavevector k. The color schemes in Fig. 5 and Fig. 6 are not correlated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k SPP = ω c ε 1 (ω) ε 2 (ω) ε 1 (ω)+ ε 2 (ω)
k x (θ)= ω c n 0 sin θ 0

Metrics