Abstract

We have successfully fabricated a series of sampled fiber Bragg gratings with easily adjustable sampling periods and duty cycles using an 800 nm femtosecond laser point-by-point inscription. The thermal stability of the fabricated fiber gratings was investigated using isochronal annealing tests, which indicated that the fiber gratings are capable of maintaining high reflectivity at temperatures of up to 1000°C for 8 h. This demonstrates the potential of the developed sampled fiber Bragg gratings for use in multi-wavelength fiber lasers and a variety of high temperature applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sampled Bragg gratings formed in helically twisted fibers and their potential application for the simultaneous measurement of mechanical torsion and temperature

Jie Li, Gaoyang Chen, Peng Ma, Li-Peng Sun, Chuang Wu, and Bai-Ou Guan
Opt. Express 26(10) 12903-12911 (2018)

Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses

Yuhua Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan
Opt. Express 16(26) 21239-21247 (2008)

Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation

Yuhua Li, Minwei Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan
Opt. Express 17(22) 19785-19790 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Lee and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photonics Technol. Lett. 16(2), 635–637 (2004).
    [Crossref]
  2. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
    [Crossref] [PubMed]
  3. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
    [Crossref]
  4. J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
    [Crossref]
  5. M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34(11), 1717–1719 (2009).
    [Crossref] [PubMed]
  6. W. Jin, S. Murray, D. Pinchbeck, G. Stewart, and B. Culshaw, “Absorption measurement of methane gas with a broadband light source and interferometric signal processing,” Opt. Lett. 18(16), 1364–1366 (1993).
    [Crossref] [PubMed]
  7. F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
    [Crossref]
  8. B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
    [Crossref]
  9. X. Fang, X. Y. He, C. R. Liao, M. Yang, D. N. Wang, and Y. Wang, “A new method for sampled fiber Bragg grating fabrication by use of both femtosecond laser and CO2 laser,” Opt. Express 18(3), 2646–2654 (2010).
    [Crossref] [PubMed]
  10. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  11. A. Martinez, I. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
    [Crossref]
  12. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  13. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
    [Crossref] [PubMed]
  14. C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).
  15. C. Koutsides, E. Davies, K. Kalli, M. Komodromos, T. Allsop, D. J. Webb, and L. Zhang, “Superstructure fiber gratings via single step femtosecond laser inscription,” J. Lightwave Technol. 30(8), 1229–1236 (2012).
    [Crossref]
  16. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32(24), 4534–4551 (1993).
    [Crossref] [PubMed]
  17. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
    [Crossref]
  18. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
    [Crossref] [PubMed]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  20. B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
    [Crossref]
  21. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
    [Crossref]
  22. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  23. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  24. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [Crossref] [PubMed]
  25. C. Liao and D. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photon. Sens. 3(2), 97–101 (2013).
    [Crossref]
  26. Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

2015 (1)

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

2014 (1)

2013 (1)

C. Liao and D. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photon. Sens. 3(2), 97–101 (2013).
[Crossref]

2012 (2)

2011 (2)

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (2)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

A. Martinez, I. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

2004 (4)

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

H. Lee and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photonics Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
[Crossref]

2001 (1)

2000 (2)

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

1998 (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1994 (1)

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

1993 (2)

Agrawal, G. P.

H. Lee and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photonics Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

Allsop, T.

Amediek, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Bennion, I.

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref] [PubMed]

A. Martinez, I. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774–776 (2001).
[Crossref] [PubMed]

Chen, W.

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

Chen, X.

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Culshaw, B.

Davies, E.

Dong, X.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Ehret, G.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32(24), 4534–4551 (1993).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fang, X.

Fix, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Fujii, T.

Grattan, K. T. V.

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Gwandu, B. A. L.

He, X. Y.

Ho, H. L.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Hu, T. Y.

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Jin, W.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
[Crossref]

W. Jin, S. Murray, D. Pinchbeck, G. Stewart, and B. Culshaw, “Absorption measurement of methane gas with a broadband light source and interferometric signal processing,” Opt. Lett. 18(16), 1364–1366 (1993).
[Crossref] [PubMed]

Jovanovic, N.

Ju, J.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

Kalli, K.

Khrushchev, I.

A. Martinez, I. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32(24), 4534–4551 (1993).
[Crossref] [PubMed]

Komodromos, M.

Koutsides, C.

Krug, P. A.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Kudo, Y.

Lai, Y.

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

Lee, H.

H. Lee and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photonics Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

Li, H.

Li, M.

Li, Y.

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
[Crossref] [PubMed]

Li, Z.

Liao, C.

Liao, C. R.

Liu, N.

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

Liu, S.

Liu, Y.

Lu, P.

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

Ma, J.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

Marshall, G. D.

Martinez, A.

A. Martinez, I. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Murray, S.

Ngo, N. Q.

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Nolte, S.

Ouellette, F.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Painchaud, Y.

Pinchbeck, D.

Poladian, L.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Renger, W.

Shu, X.

Simmet, G.

Steel, M. J.

Stewart, G.

Sugden, K.

Sun, T.

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tao, X.

B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

Tao, X.-M.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tjin, S. C.

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Tong, F.

F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
[Crossref]

Tünnermann, A.

Voigtländer, C.

Wai, P.

F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
[Crossref]

Wang, C.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Wang, D.

C. Liao and D. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photon. Sens. 3(2), 97–101 (2013).
[Crossref]

F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
[Crossref]

Wang, D. N.

Wang, H.

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

Wang, Q.

Wang, Y.

Webb, D. J.

Williams, R. J.

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Withford, M. J.

Xu, L.

Yang, J.

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

Yang, M.

Zhang, L.

Zhou, K.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Electron. Lett. (4)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

A. Martinez, I. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[Crossref]

F. Tong, W. Jin, D. Wang, and P. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electron. Lett. 40(10), 594–595 (2004).
[Crossref]

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (5)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technol. Lett. 10(6), 842–844 (1998).
[Crossref]

B.-O. Guan, H.-Y. Tam, X. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photonics Technol. Lett. 12(10), 1349–1351 (2000).
[Crossref]

H. Lee and G. P. Agrawal, “Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings,” IEEE Photonics Technol. Lett. 16(2), 635–637 (2004).
[Crossref]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

J. Yang, S. C. Tjin, and N. Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1026–1028 (2004).
[Crossref]

J. Lightwave Technol. (2)

Lightwave Technology Journalism (1)

Y. Li, W. Chen, H. Wang, N. Liu, and P. Lu, “Bragg gratings in all-solid Bragg photonic crystal fiber written with femtosecond pulses,” Lightwave Technology Journalism 29, 3367–3371 (2011).

Measurement (1)

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2015).

Opt. Express (5)

Opt. Lett. (5)

Photon. Sens. (1)

C. Liao and D. Wang, “Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing,” Photon. Sens. 3(2), 97–101 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the fs-laser PBP inscription system. (b) Photograph of the fs-laser micropositioning setup. (c) Principle of the SFBG PBP inscription process.
Fig. 2
Fig. 2 Optical microscope image of an SFBG fabricated by the fs-laser PBP inscription system illustrated in Fig. 1. The inset presents a high-magnification image of a grating segment. For this SFBG, the number of sampling segments N and duty cycle T are set as 10 and 0.20, respectively, and the measured values of the sampling length Lp and grating segment length La are 815 μm and 168 μm, respectively.
Fig. 3
Fig. 3 (a) Transmission and reflection spectra of the SFBG shown in Fig. 2. The inset provides the details of the central peak. (b) The PDL and transmission spectra for two orthogonal states of the SFBG, where the inset image provides the details of the central peak.
Fig. 4
Fig. 4 Calculated and measured reflection spectra of SFBGs with 8.0 mm lengths and different numbers of sampling segments N, duty cycles T, and sampling lengths Lp.
Fig. 5
Fig. 5 Variation in the wavelength and reflectivity of the central peak with respect to the surrounding temperature. The inset shows the isothermal evolution of the wavelength and reflectivity of the SFBG over an 8 h period at 1000°C.
Fig. 6
Fig. 6 Reflection spectra of the original state at room temperature and that after annealing for 8 h at 1000°C.

Tables (1)

Tables Icon

Table 1 Parameters of the eight resonance peaks

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F B,k =[ cosh( γ B L a )i σ ^ γ B sinh( γ B L a ) i κ γ B sinh( γ B L a ) i κ γ B sinh( γ B L a ) cosh( γ B L a )+i σ ^ γ B sinh( γ B L a ) ]
F u =[ exp(iϕ/2) 0 0 exp(iϕ/2) ]
F= F B,N F u F B,N-1 ... F B,k ... F B,2 F u F B,1

Metrics