Abstract

The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm−1 and μ´s = 18.4 mm−1. Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light propagation in dry and wet softwood

Alwin Kienle, Cosimo D’Andrea, Florian Foschum, Paola Taroni, and Antonio Pifferi
Opt. Express 16(13) 9895-9906 (2008)

Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

Dawid Borycki, Oybek Kholiqov, Shau Poh Chong, and Vivek J. Srinivasan
Opt. Express 24(1) 329-354 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. O. Lindgren, “Medical CAT-scanning - X-ray absorption-coefficients, CT-numbers and their relation to wood density,” Wood Sci. Technol. 25(5), 341–349 (1991).
    [Crossref]
  2. G. S. Schajer and F. B. Orhan, “Measurement of wood grain angle, moisture content and density using microwaves,” Holz Roh- Werkst. 64(6), 483–490 (2006).
    [Crossref]
  3. T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
    [Crossref]
  4. T. M. Todoruk, I. D. Hartley, and M. E. Reid, “Origin of birefringence in wood at terahertz frequencies,” IEEE. Trans. Terahertz. Sci. 2(1), 123–130 (2012).
    [Crossref]
  5. M. E. Reid, I. D. Hartley, and T. M. Todoruk, Handbook of Terahertz Technology for Imaging, Sensing and Communications (Woodhead Publishing Limited, 2013).
  6. S. Tsuchikawa, “A review of recent near infrared research for wood and paper,” Appl. Spectrosc. Rev. 42(1), 43–71 (2007).
    [Crossref]
  7. S. Tsuchikawa and M. Schwanninger, “A review of recent near-infrared research for wood and paper (part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
    [Crossref]
  8. S. Tsuchikawa and H. Kobori, “A review of recent application of near infrared spectroscopy to wood science and technology,” J. Wood Sci. 61(3), 213–220 (2015).
    [Crossref]
  9. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  10. S. Tsuchikawa, “Non-traditional applications of near infrared spectroscopy based on the optical characteristic models for a biological material having cellular structure,” J. Near Infrared Spectrosc. 6(1), 41–46 (1998).
    [Crossref]
  11. S. Tsuchikawa and S. Tsutsumi, “Application of time-of-flight near-infrared Spectroscopy to wood with anisotropic cellular structure,” Appl. Spectrosc. 56(7), 869–876 (2002).
    [Crossref]
  12. Y. Kurata, T. Fujimoto, and S. Tsuchikawa, “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy,” Holzforschung 65(3), 389–395 (2011).
    [Crossref]
  13. A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16(13), 9895–9906 (2008).
    [Crossref] [PubMed]
  14. C. D’Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62(5), 569–574 (2008).
    [Crossref] [PubMed]
  15. C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
    [Crossref] [PubMed]
  16. I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).
  17. A. J. Stamm, “Density of wood substance, adsorption by wood, and permeability of wood,” J. Phys. Chem. 33(3), 398–414 (1929).
  18. G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
    [Crossref]
  19. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
    [Crossref] [PubMed]
  20. L. Leonardi and D. H. Burns, “Quantitative measurements in scattering media: Photon time-of-flight analysis with analytical descriptors,” Appl. Spectrosc. 53(6), 628–636 (1999).
    [Crossref]
  21. S. Tsuchikawa, T. Takahashi, and S. Tsutsumi, “Nondestructive measurement of wood properties by using near-infrared laser radiation,” Forest Prod. J. 50(1), 81–86 (2000).
  22. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
    [Crossref] [PubMed]
  23. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  24. S. Eda and E. Okada, “Monte Carlo analysis of near-infrared light propagation in a neonatal head model,” Syst. Comput. Jpn. 35(9), 60–69 (2004).
    [Crossref]

2015 (2)

S. Tsuchikawa and H. Kobori, “A review of recent application of near infrared spectroscopy to wood science and technology,” J. Wood Sci. 61(3), 213–220 (2015).
[Crossref]

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

2014 (1)

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

2013 (2)

S. Tsuchikawa and M. Schwanninger, “A review of recent near-infrared research for wood and paper (part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

2012 (1)

T. M. Todoruk, I. D. Hartley, and M. E. Reid, “Origin of birefringence in wood at terahertz frequencies,” IEEE. Trans. Terahertz. Sci. 2(1), 123–130 (2012).
[Crossref]

2011 (1)

Y. Kurata, T. Fujimoto, and S. Tsuchikawa, “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy,” Holzforschung 65(3), 389–395 (2011).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

S. Tsuchikawa, “A review of recent near infrared research for wood and paper,” Appl. Spectrosc. Rev. 42(1), 43–71 (2007).
[Crossref]

2006 (1)

G. S. Schajer and F. B. Orhan, “Measurement of wood grain angle, moisture content and density using microwaves,” Holz Roh- Werkst. 64(6), 483–490 (2006).
[Crossref]

2004 (1)

S. Eda and E. Okada, “Monte Carlo analysis of near-infrared light propagation in a neonatal head model,” Syst. Comput. Jpn. 35(9), 60–69 (2004).
[Crossref]

2002 (1)

2000 (1)

S. Tsuchikawa, T. Takahashi, and S. Tsutsumi, “Nondestructive measurement of wood properties by using near-infrared laser radiation,” Forest Prod. J. 50(1), 81–86 (2000).

1999 (1)

1998 (1)

S. Tsuchikawa, “Non-traditional applications of near infrared spectroscopy based on the optical characteristic models for a biological material having cellular structure,” J. Near Infrared Spectrosc. 6(1), 41–46 (1998).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1993 (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

1991 (1)

L. O. Lindgren, “Medical CAT-scanning - X-ray absorption-coefficients, CT-numbers and their relation to wood density,” Wood Sci. Technol. 25(5), 341–349 (1991).
[Crossref]

1989 (1)

1983 (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

1929 (1)

A. J. Stamm, “Density of wood substance, adsorption by wood, and permeability of wood,” J. Phys. Chem. 33(3), 398–414 (1929).

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Ahmed, B.

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

Andrea, C. D.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Bargigia, I.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Bassi, A.

Beauvoit, B.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

Burns, D. H.

Chance, B.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

Comelli, D.

Cubeddu, R.

D’Andrea, C.

Eda, S.

S. Eda and E. Okada, “Monte Carlo analysis of near-infrared light propagation in a neonatal head model,” Syst. Comput. Jpn. 35(9), 60–69 (2004).
[Crossref]

Farina, A.

Foschum, F.

Fujimoto, T.

Y. Kurata, T. Fujimoto, and S. Tsuchikawa, “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy,” Holzforschung 65(3), 389–395 (2011).
[Crossref]

Hans, G.

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

Hartley, I. D.

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

T. M. Todoruk, I. D. Hartley, and M. E. Reid, “Origin of birefringence in wood at terahertz frequencies,” IEEE. Trans. Terahertz. Sci. 2(1), 123–130 (2012).
[Crossref]

Inagaki, T.

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Kang, K.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

Kaplan, P. D.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

Karlsson, M.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Kienle, A.

Kitamura, R.

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

Kobori, H.

S. Tsuchikawa and H. Kobori, “A review of recent application of near infrared spectroscopy to wood science and technology,” J. Wood Sci. 61(3), 213–220 (2015).
[Crossref]

Kurata, Y.

Y. Kurata, T. Fujimoto, and S. Tsuchikawa, “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy,” Holzforschung 65(3), 389–395 (2011).
[Crossref]

Leblon, B.

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

Leonardi, L.

Lindgren, L. O.

L. O. Lindgren, “Medical CAT-scanning - X-ray absorption-coefficients, CT-numbers and their relation to wood density,” Wood Sci. Technol. 25(5), 341–349 (1991).
[Crossref]

Liu, H.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

Lundin, P.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Miwa, M.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

Nevin, A.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref] [PubMed]

Okada, E.

S. Eda and E. Okada, “Monte Carlo analysis of near-infrared light propagation in a neonatal head model,” Syst. Comput. Jpn. 35(9), 60–69 (2004).
[Crossref]

Orhan, F. B.

G. S. Schajer and F. B. Orhan, “Measurement of wood grain angle, moisture content and density using microwaves,” Holz Roh- Werkst. 64(6), 483–490 (2006).
[Crossref]

Orlandi, M.

Patterson, M. S.

Pifferi, A.

Reid, M. E.

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

T. M. Todoruk, I. D. Hartley, and M. E. Reid, “Origin of birefringence in wood at terahertz frequencies,” IEEE. Trans. Terahertz. Sci. 2(1), 123–130 (2012).
[Crossref]

Schajer, G. S.

G. S. Schajer and F. B. Orhan, “Measurement of wood grain angle, moisture content and density using microwaves,” Holz Roh- Werkst. 64(6), 483–490 (2006).
[Crossref]

Schwanninger, M.

S. Tsuchikawa and M. Schwanninger, “A review of recent near-infrared research for wood and paper (part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

Somesfalean, G.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Stamm, A. J.

A. J. Stamm, “Density of wood substance, adsorption by wood, and permeability of wood,” J. Phys. Chem. 33(3), 398–414 (1929).

Svanberg, S.

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

Takahashi, T.

S. Tsuchikawa, T. Takahashi, and S. Tsutsumi, “Nondestructive measurement of wood properties by using near-infrared laser radiation,” Forest Prod. J. 50(1), 81–86 (2000).

Taroni, P.

Todoruk, T. M.

T. M. Todoruk, I. D. Hartley, and M. E. Reid, “Origin of birefringence in wood at terahertz frequencies,” IEEE. Trans. Terahertz. Sci. 2(1), 123–130 (2012).
[Crossref]

Tsuchikawa, S.

S. Tsuchikawa and H. Kobori, “A review of recent application of near infrared spectroscopy to wood science and technology,” J. Wood Sci. 61(3), 213–220 (2015).
[Crossref]

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

S. Tsuchikawa and M. Schwanninger, “A review of recent near-infrared research for wood and paper (part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

Y. Kurata, T. Fujimoto, and S. Tsuchikawa, “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy,” Holzforschung 65(3), 389–395 (2011).
[Crossref]

S. Tsuchikawa, “A review of recent near infrared research for wood and paper,” Appl. Spectrosc. Rev. 42(1), 43–71 (2007).
[Crossref]

S. Tsuchikawa and S. Tsutsumi, “Application of time-of-flight near-infrared Spectroscopy to wood with anisotropic cellular structure,” Appl. Spectrosc. 56(7), 869–876 (2002).
[Crossref]

S. Tsuchikawa, T. Takahashi, and S. Tsutsumi, “Nondestructive measurement of wood properties by using near-infrared laser radiation,” Forest Prod. J. 50(1), 81–86 (2000).

S. Tsuchikawa, “Non-traditional applications of near infrared spectroscopy based on the optical characteristic models for a biological material having cellular structure,” J. Near Infrared Spectrosc. 6(1), 41–46 (1998).
[Crossref]

Tsutsumi, S.

S. Tsuchikawa and S. Tsutsumi, “Application of time-of-flight near-infrared Spectroscopy to wood with anisotropic cellular structure,” Appl. Spectrosc. 56(7), 869–876 (2002).
[Crossref]

S. Tsuchikawa, T. Takahashi, and S. Tsutsumi, “Nondestructive measurement of wood properties by using near-infrared laser radiation,” Forest Prod. J. 50(1), 81–86 (2000).

Valentini, G.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wilson, B. C.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zoia, L.

Appl. Opt. (2)

Appl. Spectrosc. (3)

Appl. Spectrosc. Rev. (2)

S. Tsuchikawa, “A review of recent near infrared research for wood and paper,” Appl. Spectrosc. Rev. 42(1), 43–71 (2007).
[Crossref]

S. Tsuchikawa and M. Schwanninger, “A review of recent near-infrared research for wood and paper (part 2),” Appl. Spectrosc. Rev. 48(7), 560–587 (2013).
[Crossref]

Cell Biophys. (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23(1-3), 91–109 (1993).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Forest Prod. J. (1)

S. Tsuchikawa, T. Takahashi, and S. Tsutsumi, “Nondestructive measurement of wood properties by using near-infrared laser radiation,” Forest Prod. J. 50(1), 81–86 (2000).

Holz Roh- Werkst. (1)

G. S. Schajer and F. B. Orhan, “Measurement of wood grain angle, moisture content and density using microwaves,” Holz Roh- Werkst. 64(6), 483–490 (2006).
[Crossref]

Holzforschung (1)

Y. Kurata, T. Fujimoto, and S. Tsuchikawa, “Optical characteristics of wood investigated by time-of-flight near infrared spectroscopy,” Holzforschung 65(3), 389–395 (2011).
[Crossref]

IEEE. Trans. Terahertz. Sci. (1)

T. M. Todoruk, I. D. Hartley, and M. E. Reid, “Origin of birefringence in wood at terahertz frequencies,” IEEE. Trans. Terahertz. Sci. 2(1), 123–130 (2012).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

T. Inagaki, B. Ahmed, I. D. Hartley, S. Tsuchikawa, and M. E. Reid, “Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(11), 949–961 (2014).
[Crossref]

J. Near Infrared Spectrosc. (2)

S. Tsuchikawa, “Non-traditional applications of near infrared spectroscopy based on the optical characteristic models for a biological material having cellular structure,” J. Near Infrared Spectrosc. 6(1), 41–46 (1998).
[Crossref]

I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D. Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterization,” J. Near Infrared Spectrosc. 21(4), 256–268 (2013).

J. Phys. Chem. (1)

A. J. Stamm, “Density of wood substance, adsorption by wood, and permeability of wood,” J. Phys. Chem. 33(3), 398–414 (1929).

J. Wood Sci. (1)

S. Tsuchikawa and H. Kobori, “A review of recent application of near infrared spectroscopy to wood science and technology,” J. Wood Sci. 61(3), 213–220 (2015).
[Crossref]

Med. Phys. (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Opt. Express (1)

Syst. Comput. Jpn. (1)

S. Eda and E. Okada, “Monte Carlo analysis of near-infrared light propagation in a neonatal head model,” Syst. Comput. Jpn. 35(9), 60–69 (2004).
[Crossref]

Wood Mater. Sci. Eng. (1)

G. Hans, R. Kitamura, T. Inagaki, B. Leblon, and S. Tsuchikawa, “Assessment of variations in air-dry wood density using time-of-flight near-infrared spectroscopy,” Wood Mater. Sci. Eng. 10(1), 57–68 (2015).
[Crossref]

Wood Sci. Technol. (1)

L. O. Lindgren, “Medical CAT-scanning - X-ray absorption-coefficients, CT-numbers and their relation to wood density,” Wood Sci. Technol. 25(5), 341–349 (1991).
[Crossref]

Other (1)

M. E. Reid, I. D. Hartley, and T. M. Todoruk, Handbook of Terahertz Technology for Imaging, Sensing and Communications (Woodhead Publishing Limited, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental procedure.
Fig. 2
Fig. 2 TRP obtained from liquid saturated wood samples.
Fig. 3
Fig. 3 Relationship between the refractive index of the saturation liquids and the average path length of the TRP.
Fig. 4
Fig. 4 Relationship between the refractive indices of the saturation liquids and (a) the absorption coefficient (μa) and (b) the reduced scattering coefficient (μ´s) measured by TOF-NIRS.
Fig. 5
Fig. 5 Model of cell wall structure in wood.
Fig. 6
Fig. 6 Measured (dashed line) and simulated (solid line) TRP (sample thickness: 1.03 mm)

Tables (1)

Tables Icon

Table 1 Summary of Saturation Liquids.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

μ s ' =(1g) μ s .
f air = ρ ws ρ wood ρ ws ρ air .
M saturated = f air × ρ liquid + f ws × ρ ws .
TRP = IRF TRD.
n saturated = f air × n liquid + f ws × n ws .
T= tf(t)dt f(t)dt .
ΔT= T sample T ref .
L=ln( R 1 )/( μ s + μ a ).
θ= cos 1 (12 R 2 ).
Φ=2π R 3 .
R 4 < R fres = (1 n ws ) 2 (1+ n ws ) 2 .

Metrics