Abstract

Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Joint Banding-Node Placement and Resource Allocation for Multigranular Elastic Optical Networks

Jingxin Wu, Maotong Xu, Suresh Subramaniam, and Hiroshi Hasegawa
J. Opt. Commun. Netw. 10(8) C27-C38 (2018)

Compact OXC architecture, design and prototype development for flexible waveband routing optical networks

Tomohiro Ishikawa, Yojiro Mori, Hiroshi Hasegawa, Suresh Subramaniam, Ken-ichi Sato, and Osamu Moriwaki
Opt. Express 25(14) 15838-15853 (2017)

Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold all-optical bandwidth granularity

N. Amaya, G. S. Zervas, B. Rahimzadeh Rofoee, M. Irfan, Y. Qin, and D. Simeonidou
Opt. Express 19(26) B235-B241 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-Gi-Gabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43(3), 183–185 (2007).
    [Crossref]
  2. A. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [Crossref]
  3. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  4. M. F. Huang, A. Tanaka, E. Ip, Y. K. Huang, D. Qian, Y. Zhang, S. Zhang, P. N. Ji, I. B. Djordjevic, T. Wang, Y. Aono, S. Murakami, T. Tajima, T. J. Xia, and G. A. Wellbrock, “Terabit/s Nyquist superchannels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats,” J. Lightwave Technol. 32(4), 776–782 (2014).
    [Crossref]
  5. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  6. B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.
  7. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  8. H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” Proc. ECOC2010, Tu.3.C.1.
    [Crossref]
  9. Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
    [Crossref]
  10. http://www.finisar.com/products/optical-instrumentation/WaveShaper-4000S
  11. A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable the explosive growth of the Internet,” IEEE Commun. Mag. 49(1), 126–132 (2011).
    [Crossref]
  12. P. Pagnan and M. Schiano, “A λ switched photonic network for the new transport backbone of Telecom Italia,” Proc. PS2009, ThII2–1.
    [Crossref]
  13. S. Woodward, “Balancing costs & benefits in a flexible grid network,” in Proc. OFC/NFOEC (IEEE, 2012), paper WS.
  14. Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
    [Crossref] [PubMed]
  15. T. Ban, H. Hasegawa, K. Sato, T. Watanabe, and H. Takahashi, “A novel large-scale OXC architecture that employs wavelength path switching and fiber selection,” in Proc. ECOC (IEEE, 2012), paper We.3.D.1.
  16. L. Hai-Chau, H. Hasegawa, and K. Sato, “A large capacity optical cross-connect architecture exploiting multi-granular optical path routing,” in 2012 International Conference on Photonics in Switching (IEEE, 2012), FrS26.
  17. K. Sato and H. Hasegawa, “Optical networking technologies that will create future bandwidth abundant networks,” J. Opt. Commun. Netw. 1(2), A81–A93 (2009).
    [Crossref]
  18. Y. Yamada, H. Hasegawa, and K. Sato, “Coarse granular routing in optical path networks and impact of supplemental intermediate grooming,” Proc. ECOC 2010, Th.10.F.1.
    [Crossref]
  19. Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato, “A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop,” in Proc. OFC/NFOEC (OSA, 2012), JW2A.2.
    [Crossref]
  20. S. Mitsui, H. Hasegawa, and K. Sato, “Low loss and cost-effective hierarchical optical path cross-connect switch architecture based on WSS/WBSS,” in 2009 International Conference on Photonics in Switching (IEEE, 2009), paper FrII2–3.
    [Crossref]
  21. W. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
    [Crossref]
  22. http://www.ntt-electronics.com/en/products/photonics/awg_mul_d.html
  23. http://pdf.directindustry.com/pdf/finisar/dwp100-dynamic-wavelength-processor-wavelength-selective-switch-wss/35039-216633-_2.html
  24. X. Wan, N. Hua, and X. Zheng, “Dynamic routing and spectrum assignment in spectrum flexible transparent optical networks,” J. Opt. Commun. Netw. 4(8), 603 (2012).
    [Crossref]
  25. H. Hasegawa, Y. Tanaka, K.-I. Sato, and Y. Iwai, “Subsystem modular OXC architecture that achieves disruption free port count expansion,” Proc. ECOC2013, Th.2.E.4.
    [Crossref]
  26. A. Fallahpour, H. Beyranvand, S. A. Nezamalhosseini, and J. A. Salehi, “Energy efficient routing and spectrum assignment with regenerator placement in elastic optical networks,” J. Lightwave Technol. 32(10), 2019–2027 (2014).
    [Crossref]

2014 (2)

2013 (2)

2012 (1)

2011 (2)

2009 (3)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

K. Sato and H. Hasegawa, “Optical networking technologies that will create future bandwidth abundant networks,” J. Opt. Commun. Netw. 1(2), A81–A93 (2009).
[Crossref]

2007 (2)

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-Gi-Gabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43(3), 183–185 (2007).
[Crossref]

A. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
[Crossref]

Aono, Y.

Armstrong, J.

Beyranvand, H.

Bosco, G.

Carena, A.

Chen, Y.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Chen, Z.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Curri, V.

Djordjevic, I. B.

Du, L. B.

Fallahpour, A.

Forghieri, F.

Guo, B.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Hai-Chau, L.

L. Hai-Chau, H. Hasegawa, and K. Sato, “A large capacity optical cross-connect architecture exploiting multi-granular optical path routing,” in 2012 International Conference on Photonics in Switching (IEEE, 2012), FrS26.

Hasegawa, H.

Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
[Crossref] [PubMed]

K. Sato and H. Hasegawa, “Optical networking technologies that will create future bandwidth abundant networks,” J. Opt. Commun. Netw. 1(2), A81–A93 (2009).
[Crossref]

Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato, “A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop,” in Proc. OFC/NFOEC (OSA, 2012), JW2A.2.
[Crossref]

L. Hai-Chau, H. Hasegawa, and K. Sato, “A large capacity optical cross-connect architecture exploiting multi-granular optical path routing,” in 2012 International Conference on Photonics in Switching (IEEE, 2012), FrS26.

H. Hasegawa, Y. Tanaka, K.-I. Sato, and Y. Iwai, “Subsystem modular OXC architecture that achieves disruption free port count expansion,” Proc. ECOC2013, Th.2.E.4.
[Crossref]

He, Y.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Hua, N.

Huang, M. F.

Huang, Y. K.

Ip, E.

Iwai, Y.

Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
[Crossref] [PubMed]

H. Hasegawa, Y. Tanaka, K.-I. Sato, and Y. Iwai, “Subsystem modular OXC architecture that achieves disruption free port count expansion,” Proc. ECOC2013, Th.2.E.4.
[Crossref]

Ji, P. N.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.

Li, J.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Lowery, A.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Morita, I.

W. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol. 31(13), 2146–2162 (2013).
[Crossref]

H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” Proc. ECOC2010, Tu.3.C.1.
[Crossref]

Murakami, S.

Nezamalhosseini, S. A.

Pagnan, P.

P. Pagnan and M. Schiano, “A λ switched photonic network for the new transport backbone of Telecom Italia,” Proc. PS2009, ThII2–1.
[Crossref]

Peng, W.

Poggiolini, P.

Qian, D.

Saleh, A. A. M.

A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable the explosive growth of the Internet,” IEEE Commun. Mag. 49(1), 126–132 (2011).
[Crossref]

Salehi, J. A.

Sato, K.

Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
[Crossref] [PubMed]

K. Sato and H. Hasegawa, “Optical networking technologies that will create future bandwidth abundant networks,” J. Opt. Commun. Netw. 1(2), A81–A93 (2009).
[Crossref]

Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato, “A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop,” in Proc. OFC/NFOEC (OSA, 2012), JW2A.2.
[Crossref]

L. Hai-Chau, H. Hasegawa, and K. Sato, “A large capacity optical cross-connect architecture exploiting multi-granular optical path routing,” in 2012 International Conference on Photonics in Switching (IEEE, 2012), FrS26.

Sato, K.-I.

H. Hasegawa, Y. Tanaka, K.-I. Sato, and Y. Iwai, “Subsystem modular OXC architecture that achieves disruption free port count expansion,” Proc. ECOC2013, Th.2.E.4.
[Crossref]

Schiano, M.

P. Pagnan and M. Schiano, “A λ switched photonic network for the new transport backbone of Telecom Italia,” Proc. PS2009, ThII2–1.
[Crossref]

Shieh, W.

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-Gi-Gabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43(3), 183–185 (2007).
[Crossref]

Simmons, J. M.

A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable the explosive growth of the Internet,” IEEE Commun. Mag. 49(1), 126–132 (2011).
[Crossref]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tajima, T.

Takahashi, H.

H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” Proc. ECOC2010, Tu.3.C.1.
[Crossref]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.

Takeshima, K.

H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” Proc. ECOC2010, Tu.3.C.1.
[Crossref]

Tanaka, A.

Tanaka, H.

H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” Proc. ECOC2010, Tu.3.C.1.
[Crossref]

Tanaka, Y.

H. Hasegawa, Y. Tanaka, K.-I. Sato, and Y. Iwai, “Subsystem modular OXC architecture that achieves disruption free port count expansion,” Proc. ECOC2013, Th.2.E.4.
[Crossref]

Tang, Y.

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-Gi-Gabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43(3), 183–185 (2007).
[Crossref]

Taniguchi, Y.

Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato, “A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop,” in Proc. OFC/NFOEC (OSA, 2012), JW2A.2.
[Crossref]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tsuritani, T.

Wan, X.

Wang, T.

Wellbrock, G. A.

Xia, T. J.

Xu, Y.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Yamada, Y.

Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato, “A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop,” in Proc. OFC/NFOEC (OSA, 2012), JW2A.2.
[Crossref]

Yi, X.

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-Gi-Gabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43(3), 183–185 (2007).
[Crossref]

Yonenaga, K.

B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.

Yoshimatsu, T.

B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.

Zhang, S.

Zhang, Y.

Zheng, X.

Zhu, P.

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

Electron. Lett. (1)

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-Gi-Gabit coherent optical OFDM systems over 1000 km SSMF fiber,” Electron. Lett. 43(3), 183–185 (2007).
[Crossref]

IEEE Commun. Mag. (2)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable the explosive growth of the Internet,” IEEE Commun. Mag. 49(1), 126–132 (2011).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Commun. Netw. (2)

Opt. Express (1)

Other (14)

T. Ban, H. Hasegawa, K. Sato, T. Watanabe, and H. Takahashi, “A novel large-scale OXC architecture that employs wavelength path switching and fiber selection,” in Proc. ECOC (IEEE, 2012), paper We.3.D.1.

L. Hai-Chau, H. Hasegawa, and K. Sato, “A large capacity optical cross-connect architecture exploiting multi-granular optical path routing,” in 2012 International Conference on Photonics in Switching (IEEE, 2012), FrS26.

P. Pagnan and M. Schiano, “A λ switched photonic network for the new transport backbone of Telecom Italia,” Proc. PS2009, ThII2–1.
[Crossref]

S. Woodward, “Balancing costs & benefits in a flexible grid network,” in Proc. OFC/NFOEC (IEEE, 2012), paper WS.

Y. Yamada, H. Hasegawa, and K. Sato, “Coarse granular routing in optical path networks and impact of supplemental intermediate grooming,” Proc. ECOC 2010, Th.10.F.1.
[Crossref]

Y. Taniguchi, Y. Yamada, H. Hasegawa, and K. Sato, “A novel optical networking scheme utilizing coarse granular optical routing and fine granular add/drop,” in Proc. OFC/NFOEC (OSA, 2012), JW2A.2.
[Crossref]

S. Mitsui, H. Hasegawa, and K. Sato, “Low loss and cost-effective hierarchical optical path cross-connect switch architecture based on WSS/WBSS,” in 2009 International Conference on Photonics in Switching (IEEE, 2009), paper FrII2–3.
[Crossref]

B. Kozicki, H. Takara, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Filtering characteristics of highly-spectrum efficient spectrum-slicedelastic optical path (SLICE) network,” Proc. OFC2009, JWA43.

H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid,” Proc. ECOC2010, Tu.3.C.1.
[Crossref]

Z. Chen, Y. Chen, J. Li, P. Zhu, Y. Xu, B. Guo, and Y. He, “Demonstration of elastic optical networks based on OFDM/SCFDM subbands,” Proc. ACP2013, AF1H.3.
[Crossref]

http://www.finisar.com/products/optical-instrumentation/WaveShaper-4000S

H. Hasegawa, Y. Tanaka, K.-I. Sato, and Y. Iwai, “Subsystem modular OXC architecture that achieves disruption free port count expansion,” Proc. ECOC2013, Th.2.E.4.
[Crossref]

http://www.ntt-electronics.com/en/products/photonics/awg_mul_d.html

http://pdf.directindustry.com/pdf/finisar/dwp100-dynamic-wavelength-processor-wavelength-selective-switch-wss/35039-216633-_2.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 OXC Architectures: (a) WDM OXC; (b) proposed CTS-TOXC; (c) proposed MS-TOXC; (d) all-SSS EON OXC.
Fig. 2
Fig. 2 Experimental setup of superchannel switching by TOXCs (insets: superchannels and filtering effects of SSSs and WSSs).
Fig. 3
Fig. 3 Optical spectra and Q factor: (a) a superchannel using EON-OXCs; (b) the same superchannel using CTS-TOXCs; (c) a superchannel using CTS-TOXCs and occupying two adjacent WDM-grids.
Fig. 4
Fig. 4 (a) CASA Scheme; (b) the detail of Wi(j).
Fig. 5
Fig. 5 An example of CASA scheme: (a) spectrum occupation situation; (b) spectrum patterns’ priorities.
Fig. 6
Fig. 6 Simulation results: (a) test of parameter c; (b) test of parameter w.
Fig. 7
Fig. 7 Simulation results: (a) comparison between CASA and First-Fit. (b) BBP performances of different OXCs; (c) NAs of different OXCs; (d) transition cost of different OXCs.

Tables (1)

Tables Icon

Table 1 OXC Degrees in COST266 Network

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V P a t t e r n ( j ) = i P R o u t i n g ( j + W i ( j ) )
W i ( j ) = { 0 , Available WDM-grid: at least one of the WSSs i n N o d e i i s e m p t y in the considered WDM grid(s) for pattern j ; w , Preferred WDM-grid: at least one of the WSSs in Node i has the same direction of the request in the considered WDM grid(s) for pattern j ; , Unavailable WDM-grid: all of the WSSs i n N o d e i i s o c c u p i e d a n d t h e i r d i r e c t i o n i s d i f f e r e n t f r o m t h e r e q u e s t in the considered WDM grid(s) for pattern j ;
B B P = i B R e q C i × A i i B R e q C i
C A P E X C O S T 266 = { i = 1 26 n i × C o s t 1 × n i S S S , f o r E O N - O X C ; i = 1 26 ( n i 2 × C o s t 1 × n i S S S + n i 2 × C o s t 1 × 2 S S S + n i × C o s t 1 × n i W S S ) , f o r M S - T O X C ; i = 1 26 ( n i × C o s t 1 × 2 S S S + 2 n i × C o s t 1 × n i W S S ) , f o r C T S - T O X C ; i = 1 26 n i × C o s t 1 × n i W S S , f o r W D M - O X C ;
| C A P E X n × n O X C | = { n × n × γ , f o r E O N - O X C ; ( n 2 × n + n 2 × 2 ) × γ + n × n , f o r M S - T O X C ; ( n × 2 ) × γ + 2 n × n , f o r C T S - T O X C ; n × n , f o r W D M - O X C ;
T r a n s i t i o n _ C o s t = { | C A P E X E O N O X C | , f o r E O N - O X C | C A P E X T O X C | | C A P E X W D M O X C | , f o r T O X C s

Metrics