Abstract

The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vulnerability of CMOS image sensors in megajoule class laser harsh environment

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster
Opt. Express 20(18) 20028-20042 (2012)

Influence of neutron and gamma-ray irradiations on rad-hard optical fiber

A. Morana, S. Girard, M. Cannas, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, R. Boscaino, B. Nacir, A. Boukenter, and Y. Ouerdane
Opt. Mater. Express 5(4) 898-911 (2015)

Optical confinement methods for continued scaling of CMOS image sensor pixels

Christian C. Fesenmaier, Yijie Huo, and Peter B. Catrysse
Opt. Express 16(25) 20457-20470 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008).
    [Crossref] [PubMed]
  2. K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21(9), 11132–11140 (2013).
    [Crossref] [PubMed]
  3. A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13(17), 6416–6428 (2005).
    [Crossref] [PubMed]
  4. A. Nakajima, H. Kimura, Y. Sawadsaringkarn, Y. Maezawa, T. Kobayashi, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, and J. Ohta, “CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue,” Opt. Express 20(6), 6097–6108 (2012).
    [Crossref] [PubMed]
  5. T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
    [Crossref] [PubMed]
  6. D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).
  7. X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
    [Crossref]
  8. S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
    [Crossref] [PubMed]
  9. J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).
  10. V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
    [Crossref] [PubMed]
  11. A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
    [Crossref]
  12. S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express 20(8), 8457–8465 (2012).
    [Crossref] [PubMed]
  13. A. H. Johnston, “Radiation effects in optoelectronic devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
    [Crossref]
  14. V. Goiffon and P. Magnan, “Radiation Damages in CMOS Active Pixel Sensors, ” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMA3.
  15. G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE Trans. Nucl. Sci. 47(6), 2480–2484 (2000).
    [Crossref]
  16. J. Bogaert and B. Dierickx, “Total dose effects on CMOS active pixel sensors,” Proc. SPIE 3965, 157 (2000).
  17. V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
    [Crossref]
  18. V. Goiffon, “Radiation Effects on CMOS Active Pixel Image Sensors, in Ionizing Radiation Effects in Electronics: From Memories to Imagers (CRC Press, 2015), ch. 11, pp. 295–332.
  19. J. Bogaert, B. Dierickx, and C. A. Van Hoof, “Radiation-induced dark current increase in CMOS active pixel sensors,” Proc. SPIE. 4134, 105 (2000).
  20. V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
    [Crossref]
  21. V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
    [Crossref]
  22. C.-T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. of the IRE45(9), 1228–1243 (1957).
  23. J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003).
    [Crossref]
  24. J. M. Messe, Neutron Transmutation Doping in Semiconductors (Plenum Press, 1979).
  25. I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
    [Crossref]
  26. N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).
  27. X. Wang, J. Bogaerts, W. Ogiers, G. Beeckman, and G. Meynants, “Design and characterization of radiation tolerant CMOS image sensor for space applications,” Proc. SPIE 8194, International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, 81942N (2011).
    [Crossref]
  28. V. Goiffon, F. Corbière, S. Rolando, M. Estribeau, P. Magnan, B. Avon, and C. Marcandella, “Toward multi-MGy/Grad radiation hardened CMOS image sensors for nuclear applications,” presented at International Image Sensor Workshop (IISW 2015), Jun 2015, Vaals, Netherlands (2015).
  29. J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).
  30. C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
    [Crossref]
  31. J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, “Permanent damage produced by single proton interactions in silicon devices,” IEEE Trans. Nucl. Sci. 33(6), 1597–1604 (1986).
    [Crossref]
  32. C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
    [Crossref]
  33. M. S. Robbins, “High-energy proton-induced dark signal in silicon charge coupled devices,” IEEE Trans. Nucl. Sci. 47(6), 2473–2479 (2000).
    [Crossref]
  34. O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
    [Crossref]
  35. C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).
  36. C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
    [Crossref]
  37. J. R. Srour and D. H. Lo, “Universal damage parameter for radiation-induced dark current in silicon devices,” IEEE Trans. Nucl. Sci. 47(6), 2451–2459 (2000).
    [Crossref]
  38. A. Vasilescu and G. Lindstroem, “Displacement damage in silicon, on-line compilation,” http://rd50.web.cern.ch/RD50/NIEL/default.html (2000).
  39. J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).
  40. N Soppera, E. Dupont, M. Bossant, “JANIS Book of neutron-induced cross-sections,” http://www.oecd-nea.org/janis/book/ (2012).
  41. H. J. Stein, “Energy dependence of neutron damage in silicon,” J. Appl. Phys. 38, 204 (1967).
  42. J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).
  43. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Inst. and Methods in Phys. B. 268(11-12), 1818–1823 (2010).

2015 (3)

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

2014 (3)

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), 3859–3870 (2014).
[Crossref] [PubMed]

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

2013 (5)

A. H. Johnston, “Radiation effects in optoelectronic devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
[Crossref]

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
[Crossref] [PubMed]

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21(9), 11132–11140 (2013).
[Crossref] [PubMed]

D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).

2012 (7)

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

A. Nakajima, H. Kimura, Y. Sawadsaringkarn, Y. Maezawa, T. Kobayashi, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, and J. Ohta, “CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue,” Opt. Express 20(6), 6097–6108 (2012).
[Crossref] [PubMed]

S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express 20(8), 8457–8465 (2012).
[Crossref] [PubMed]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

2010 (3)

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Inst. and Methods in Phys. B. 268(11-12), 1818–1823 (2010).

2008 (2)

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008).
[Crossref] [PubMed]

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

2005 (1)

2003 (2)

J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003).
[Crossref]

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

2000 (5)

J. Bogaert, B. Dierickx, and C. A. Van Hoof, “Radiation-induced dark current increase in CMOS active pixel sensors,” Proc. SPIE. 4134, 105 (2000).

G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE Trans. Nucl. Sci. 47(6), 2480–2484 (2000).
[Crossref]

J. Bogaert and B. Dierickx, “Total dose effects on CMOS active pixel sensors,” Proc. SPIE 3965, 157 (2000).

M. S. Robbins, “High-energy proton-induced dark signal in silicon charge coupled devices,” IEEE Trans. Nucl. Sci. 47(6), 2473–2479 (2000).
[Crossref]

J. R. Srour and D. H. Lo, “Universal damage parameter for radiation-induced dark current in silicon devices,” IEEE Trans. Nucl. Sci. 47(6), 2451–2459 (2000).
[Crossref]

1994 (1)

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

1986 (1)

J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, “Permanent damage produced by single proton interactions in silicon devices,” IEEE Trans. Nucl. Sci. 33(6), 1597–1604 (1986).
[Crossref]

1967 (1)

H. J. Stein, “Energy dependence of neutron damage in silicon,” J. Appl. Phys. 38, 204 (1967).

1963 (1)

J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).

Ando, K.

Andrews, J.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Baggio, J.

Barbier, F.

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

Bardoux, A.

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

Beaumel, M.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

Bell, P.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Bezy, J.-L.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Biersack, J. P.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Inst. and Methods in Phys. B. 268(11-12), 1818–1823 (2010).

Bishop, J.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Bogaert, J.

J. Bogaert and B. Dierickx, “Total dose effects on CMOS active pixel sensors,” Proc. SPIE 3965, 157 (2000).

J. Bogaert, B. Dierickx, and C. A. Van Hoof, “Radiation-induced dark current increase in CMOS active pixel sensors,” Proc. SPIE. 4134, 105 (2000).

Boukenter, A.

Bourgade, J. L.

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

Bourgade, J.-L.

Boutillier, M.

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

Bréart-de-Boisanger, M.

Burke, E. A.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

Cadier, B.

Catrysse, P. B.

Cervantes, P.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Chabane, A.

Chen, L.

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

Ciapponi, A.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Corbiere, F.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

Corbière, F.

S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
[Crossref] [PubMed]

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Crouzet, P.-E.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Dale, C. J.

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

Darbon, S.

Dierickx, B.

J. Bogaert and B. Dierickx, “Total dose effects on CMOS active pixel sensors,” Proc. SPIE 3965, 157 (2000).

J. Bogaert, B. Dierickx, and C. A. Van Hoof, “Radiation-induced dark current increase in CMOS active pixel sensors,” Proc. SPIE. 4134, 105 (2000).

Do, H.

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

Duvet, L.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Elliott, T.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Endicott, J.

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

Estribeau, M.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Falguere, D.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

Fesenmaier, C. C.

Fowler, B.

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

Gaillardin, M.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

Germanicus, R.

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

Gilard, O.

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

Girard, S.

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express 20(8), 8457–8465 (2012).
[Crossref] [PubMed]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

Glebov, V. Yu.

Goiffon, V.

S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
[Crossref] [PubMed]

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Guiry, S.

Hamel, M.

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

Hartmann, R. A.

J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, “Permanent damage produced by single proton interactions in silicon devices,” IEEE Trans. Nucl. Sci. 33(6), 1597–1604 (1986).
[Crossref]

Herve, D.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

Holland, A. D.

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

Honga, D. G.

D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).

Hopkinson, G. R.

G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE Trans. Nucl. Sci. 47(6), 2480–2484 (2000).
[Crossref]

Huo, Y.

Inguimbert, C.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

Ishikawa, Y.

Jaffe, M.

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

Janesick, J.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Johnston, A. H.

A. H. Johnston, “Radiation effects in optoelectronic devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
[Crossref]

Jordan, T.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

Jounga, H. A.

D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).

Jun, I.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

Kakiuchi, K.

Kawamura, T.

Kima, M. G.

D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).

Kimb, S. H.

D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).

Kimbrough, J.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Kimura, H.

Kitazaki, K. S.

J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, “Permanent damage produced by single proton interactions in silicon devices,” IEEE Trans. Nucl. Sci. 33(6), 1597–1604 (1986).
[Crossref]

Kobayashi, T.

Lalucaa, V.

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

Larnaudie, F.

Larour, J.

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

Lasser, T.

Laurent, A.

Leidy, B.

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

Leone, B.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
[Crossref] [PubMed]

Levillain, Y.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Lincelles, J. B.

J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).

Lindhard, J.

J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).

Liu, X.

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

Lo, D. H.

J. R. Srour and D. H. Lo, “Universal damage parameter for radiation-induced dark current in silicon devices,” IEEE Trans. Nucl. Sci. 47(6), 2451–2459 (2000).
[Crossref]

Maezawa, Y.

Magnan, P.

J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
[Crossref] [PubMed]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Marcandella, C.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express 20(8), 8457–8465 (2012).
[Crossref] [PubMed]

Marcelot, O.

J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

Marshall, C. J.

J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003).
[Crossref]

Marshall, P. W.

J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003).
[Crossref]

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

Martin-Gonthier, P.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

Masuda, K.

Matsuoka, H.

Mayer, F.

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

McNulty, P. J.

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

Messenger, S. R.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

Meynart, R.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Minoglou, K.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Molina, R.

S. Rolando, V. Goiffon, P. Magnan, F. Corbière, R. Molina, M. Tulet, M. Bréart-de-Boisanger, O. Saint-Pé, S. Guiry, F. Larnaudie, B. Leone, L. Perez-Cuevas, and I. Zayer, “Smart CMOS image sensor for lightning detection and imaging,” Appl. Opt. 52(7), C16–C23 (2013).
[Crossref] [PubMed]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

Motoyama, M.

Nakajima, A.

Nelms, N.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Nielsen, V.

J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).

Noda, T.

Noyce, R. N.

C.-T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. of the IRE45(9), 1228–1243 (1957).

Nuns, T.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

Ohta, J.

Ohta, Y.

Okitsu, T.

Ouerdane, Y.

Paillet, P.

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

Perez-Cuevas, L.

Petit, S.

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

Pien, G.

Pinel, P.

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Pinsard, E.

Poizat, M.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

Quadri, G.

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

Rassel, R.

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

Robbins, M. S.

M. S. Robbins, “High-energy proton-induced dark signal in silicon charge coupled devices,” IEEE Trans. Nucl. Sci. 47(6), 2473–2479 (2000).
[Crossref]

Robin, T.

Rolando, S.

Rolland, G.

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

Rousseau, A.

Rushton, J. E.

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

Sah, C.-T.

C.-T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. of the IRE45(9), 1228–1243 (1957).

Saint-Pe, O.

J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

Saint-Pé, O.

Sangster, T. C.

Sasagawa, K.

Sawadsaringkarn, Y.

Scharff, M.

J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).

Serov, A.

Shiosaka, S.

Shishido, S.

Shockley, W.

C.-T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. of the IRE45(9), 1228–1243 (1957).

Srour, J. R.

J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003).
[Crossref]

J. R. Srour and D. H. Lo, “Universal damage parameter for radiation-induced dark current in silicon devices,” IEEE Trans. Nucl. Sci. 47(6), 2451–2459 (2000).
[Crossref]

J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, “Permanent damage produced by single proton interactions in silicon devices,” IEEE Trans. Nucl. Sci. 33(6), 1597–1604 (1986).
[Crossref]

Stefanov, K. D.

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

Stein, H. J.

H. J. Stein, “Energy dependence of neutron damage in silicon,” J. Appl. Phys. 38, 204 (1967).

Summers, G. P.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

Takahashi, M.

Takeuchi, S.

Teruya, A.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Thomsen, P. V.

J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).

Tokuda, T.

Tower, J.

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Tulet, M.

Uejima, K.

Ursule, M. C.

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

Van Hoof, C. A.

J. Bogaert, B. Dierickx, and C. A. Van Hoof, “Radiation-induced dark current increase in CMOS active pixel sensors,” Proc. SPIE. 4134, 105 (2000).

Virmontois, C.

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

Vivona, M.

Voland, C.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Walters, R. J.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

Xapsos, M. A.

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

Zahir, M.

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

Zayer, I.

Ziegler, J. F.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Inst. and Methods in Phys. B. 268(11-12), 1818–1823 (2010).

Ziegler, M. D.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Inst. and Methods in Phys. B. 268(11-12), 1818–1823 (2010).

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Trans. Electron. Dev. (1)

J. B. Lincelles, O. Marcelot, P. Magnan, and O. Saint-Pe, “Enhanced Near-Infrared Response CMOS Image Sensors using high-resistivity substrate: photodiodes design impact on performances,” IEEE Trans. Electron. Dev. 99, 1–8 (2015).

IEEE Trans. Nucl. Sci. (14)

J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003).
[Crossref]

A. H. Johnston, “Radiation effects in optoelectronic devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
[Crossref]

G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE Trans. Nucl. Sci. 47(6), 2480–2484 (2000).
[Crossref]

V. Lalucaa, V. Goiffon, P. Magnan, G. Rolland, and S. Petit, “Single-event effects in CMOS image sensors,” IEEE Trans. Nucl. Sci. 60(4), 2494–2502 (2013).
[Crossref]

V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P. Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier, R. Molina, F. Corbiere, S. Girard, P. Paillet, and C. Marcandella, “Radiation effects in pinned photodiode CMOS image sensors: pixel performance degradation due to total ionizing dose,” IEEE Trans. Nucl. Sci. 59(6), 2878–2887 (2012).
[Crossref]

I. Jun, M. A. Xapsos, S. R. Messenger, E. A. Burke, R. J. Walters, G. P. Summers, and T. Jordan, “Proton nonionizing energy loss (niel) for device applications,” IEEE Trans. Nucl. Sci. 50(6), 1924–1928 (2003).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pe, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci. 59(4), 927–936 (2012).
[Crossref]

J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, “Permanent damage produced by single proton interactions in silicon devices,” IEEE Trans. Nucl. Sci. 33(6), 1597–1604 (1986).
[Crossref]

C. J. Dale, L. Chen, P. J. McNulty, P. W. Marshall, and E. A. Burke, “A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes,” IEEE Trans. Nucl. Sci. 41(6), 1974–1983 (1994).
[Crossref]

M. S. Robbins, “High-energy proton-induced dark signal in silicon charge coupled devices,” IEEE Trans. Nucl. Sci. 47(6), 2473–2479 (2000).
[Crossref]

O. Gilard, M. Boutillier, G. Quadri, G. Rolland, and R. Germanicus, “New approach for the prediction of CCD dark current distribution in a space radiation environment,” IEEE Trans. Nucl. Sci. 55(6), 3626–3632 (2008).
[Crossref]

C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci. 57(6), 3101–3108 (2010).

C. Inguimbert, T. Nuns, M. C. Ursule, D. Falguere, D. Herve, M. Beaumel, and M. Poizat, “Modeling the Dark Current Non-Uniformity of Image Sensors with GEANT4,” IEEE Trans. Nucl. Sci. 61(6), 3323–3330 (2014).
[Crossref]

J. R. Srour and D. H. Lo, “Universal damage parameter for radiation-induced dark current in silicon devices,” IEEE Trans. Nucl. Sci. 47(6), 2451–2459 (2000).
[Crossref]

in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments (1)

J. E. Rushton, K. D. Stefanov, A. D. Holland, J. Endicott, F. Mayer, and F. Barbier, “A CMOS TDI image sensor for Earth observation,” in Proc. SPIE 9616, Nanophotonics and Macrophotonics for Space Environments IX, 96160R (2015).

J. Appl. Phys. (1)

H. J. Stein, “Energy dependence of neutron damage in silicon,” J. Appl. Phys. 38, 204 (1967).

Mat. Fys. MeDDD, Dan. Vid. Selsk (1)

J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, “Integral equations governing radiation effects (Notes on atomic collisions, III),” Mat. Fys. MeDDD, Dan. Vid. Selsk 33(10), 1–42 (1963).

Nucl. Inst. and Methods in Phys. B. (1)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Inst. and Methods in Phys. B. 268(11-12), 1818–1823 (2010).

Opt. Express (6)

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, “Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment,” Opt. Express 20(18), 20028–20042 (2012).
[Crossref] [PubMed]

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008).
[Crossref] [PubMed]

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21(9), 11132–11140 (2013).
[Crossref] [PubMed]

A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13(17), 6416–6428 (2005).
[Crossref] [PubMed]

A. Nakajima, H. Kimura, Y. Sawadsaringkarn, Y. Maezawa, T. Kobayashi, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, and J. Ohta, “CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue,” Opt. Express 20(6), 6097–6108 (2012).
[Crossref] [PubMed]

S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express 20(8), 8457–8465 (2012).
[Crossref] [PubMed]

Proc. SPIE (7)

V. Goiffon, C. Virmontois, P. Magnan, P. Cervantes, F. Corbière, M. Estribeau, and P. Pinel, “Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes,” Proc. SPIE 7826, 78261S (2010).
[Crossref]

N. Nelms, K. Minoglou, C. Voland, Y. Levillain, R. Meynart, J.-L. Bezy, L. Duvet, M. Zahir, B. Leone, A. Ciapponi, and P.-E. Crouzet, “Visible and infrared detector developments supported by the European Space Agency,” Proc. SPIE 9639, 96390O (2015).

A. Rousseau, S. Darbon, S. Girard, P. Paillet, J. L. Bourgade, V. Goiffon, M. Hamel, and J. Larour, “Vulnerability of optical detection systems to megajoule class laser radiative environment,” Proc. SPIE 8439, 84391F (2012).
[Crossref]

J. Bogaert and B. Dierickx, “Total dose effects on CMOS active pixel sensors,” Proc. SPIE 3965, 157 (2000).

D. G. Honga, H. A. Jounga, S. H. Kimb, and M. G. Kima, “High-sensitivity chemiluminescence detection of cytokines using an antibody-immobilized CMOS image sensor,” Proc. SPIE 8879, 88790 (2013).

X. Liu, B. Fowler, H. Do, M. Jaffe, R. Rassel, and B. Leidy, “Stitched large format CMOS image sensors for dental x-ray digital radiography,” Proc. SPIE 850885080D (2012).
[Crossref]

J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, and J. Bishop, “Mk x Nk gated CMOS imager,” Proc. SPIE 9211, 921106 (2014).

Proc. SPIE. (1)

J. Bogaert, B. Dierickx, and C. A. Van Hoof, “Radiation-induced dark current increase in CMOS active pixel sensors,” Proc. SPIE. 4134, 105 (2000).

Other (8)

C.-T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in pn junctions and pn junction characteristics,” Proc. of the IRE45(9), 1228–1243 (1957).

X. Wang, J. Bogaerts, W. Ogiers, G. Beeckman, and G. Meynants, “Design and characterization of radiation tolerant CMOS image sensor for space applications,” Proc. SPIE 8194, International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, 81942N (2011).
[Crossref]

V. Goiffon, F. Corbière, S. Rolando, M. Estribeau, P. Magnan, B. Avon, and C. Marcandella, “Toward multi-MGy/Grad radiation hardened CMOS image sensors for nuclear applications,” presented at International Image Sensor Workshop (IISW 2015), Jun 2015, Vaals, Netherlands (2015).

A. Vasilescu and G. Lindstroem, “Displacement damage in silicon, on-line compilation,” http://rd50.web.cern.ch/RD50/NIEL/default.html (2000).

V. Goiffon and P. Magnan, “Radiation Damages in CMOS Active Pixel Sensors, ” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMA3.

V. Goiffon, “Radiation Effects on CMOS Active Pixel Image Sensors, in Ionizing Radiation Effects in Electronics: From Memories to Imagers (CRC Press, 2015), ch. 11, pp. 295–332.

J. M. Messe, Neutron Transmutation Doping in Semiconductors (Plenum Press, 1979).

N Soppera, E. Dupont, M. Bossant, “JANIS Book of neutron-induced cross-sections,” http://www.oecd-nea.org/janis/book/ (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of a conventional photodiode in a 3T-pixel. The photodiode is a simple PN junction formed by an n-type implant inside a p-type epitaxy layer. The readout circuit contains three transistors to convert the collected charge into voltage. A damage cascade produced by a nuclear interaction from an incident neutron is represented. It is constituted by many sub-cascades, with regions of dense damage at the end of the recoil trajectories. (b) Schematic of a Pinned photodiode (PPD) of a 4T-pixel. The PPD is formed by a double P + NP junction, where the P + pinning implant protects the photodiode from the oxide interface (the depleted volume does not touch the oxide) which provides a very low dark current. The readout circuit is similar to the one in the 3T-pixel. The fourth transistor is the transfer gate used to transfer the collected charges towards the floating diffusion (and to keep the depleted volume isolated from the oxide during image integration to provide a low dark current). A part of the damage cascade is located outside the depleted volume and will not contribute to the dark current. These border effects can change the dark current distribution shape in very small pixel pitches.
Fig. 2
Fig. 2 Exponential dark current PDF, exponential n-fold convolutions and total dark current distribution for µ = 2 with the empirical model (in logarithmic y-axis scale).
Fig. 3
Fig. 3 Experimental (points) and calculated (lines) distributions for IC A1 (23 MeV, 400 TeV/g) with υdark = 4.1.103 e-/s.
Fig. 4
Fig. 4 Experimental (points) and calculated (lines) distributions for IC A2 (16 MeV, 820 TeV/g) with υdark = 4.1.103 e-/s.
Fig. 5
Fig. 5 Experimental and calculated distributions for IC A3 (14.7 MeV, 100 TeV/g), and with υdark = 4.1.103 e-/s.
Fig. 6
Fig. 6 Experimental and calculated distributions for IC A4 (14.7 MeV, 3,100 TeV/g) with υdark = 4.1.103 e-/s.
Fig. 7
Fig. 7 Experimental and calculated distributions for IC A5 (14.7 MeV, 12,700 TeV/g) with υdark = 4.1.103 e-/s.
Fig. 8
Fig. 8 Experimental (points) and calculated (lines) distributions for IC A6 (0.67 MeV, 450 TeV/g) with υdark = 4.9.103 e-/s (dashed lines) and υdark = 2.4.103 e-/s (solid lines).
Fig. 9
Fig. 9 Experimental (points) and calculated (lines) distributions for IC A7 (0.22 MeV, 450 TeV/g) with υdark = 4.9.103 e-/s (dashed lines) and υdark = 1.4.103 e-/s (solid lines).
Fig. 10
Fig. 10 Experimental and calculated distributions for sensors B1 (0.22 MeV, 210 TeV/g) and B2 (0.22 MeV, 1,050 TeV/g) with υdark = 4.9.103 e-/s (dashed lines) and υdark = 1.2.103 e-/s (solid lines).
Fig. 11
Fig. 11 PDF of the cosine of the elastic scattering angle in the Center of Mass (C.M.) axis system for various neutron energies in logarithmic scale, from [40]. This corresponds directly to the PDF of the PKA energy (zero for cos (θ) = 1, Emax for cos (θ) = −1).
Fig. 12
Fig. 12 Damage energy PDF calculated from the PKA energy PDF of Fig. 11 using the Lindhard partition function [42].

Tables (5)

Tables Icon

Table 1 Irradiated CMOS image sensors

Tables Icon

Table 2 Irradiation conditions

Tables Icon

Table 3 Estimated depleted volumes and depleted depths

Tables Icon

Table 4 Mean PKA and displacement damage energies

Tables Icon

Table 5 Experimental damage energies

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f υ d a r k ( x ) = 1 υ d a r k exp ( x υ d a r k )  
F ( x ) = P ( 1 , μ ) × f υ d a r k ( x ) + P ( 2 , μ ) × f υ d a r k ( x ) * f υ d a r k ( x ) +   w i t h   P ( n ,   µ ) =   µ n n ! exp ( µ )
μ = γ d a r k × V d e p × D D D  
  D C m e a n , m o d =   υ d a r k × µ  
D C m e a n , m o d =   υ d a r k × γ d a r k × V d e p × D D D  
D C m e a n , e x p = K d a r k × V d e p × D D D  
  υ d a r k × γ d a r k =   K d a r k
μ =   K d a r k   υ d a r k × V d e p × D D D =   D C m e a n , e x p   υ d a r k  
E P K A = 4 E n Z ( Z + 1 ) ² ( 1 cos ( θ ) ) 2 = E m a x ( 1 cos ( θ ) ) 2
E m a x = 4 E n Z ( Z + 1 ) ² = 0.133   E n   for   Si  

Metrics