Abstract

Ce3+ and Eu2+/Tb3+/Mn2+ ions codoped Ca6BaP4O17 (CBPO) phosphors have been prepared via a high-temperature solid state reaction. The structural refinement indicates that the as-prepared phosphors crystallize in monoclinic phase (C2/m) and there are two Ca sites and one Ba site in host lattice. The doping ions are determined to occupy Ca sites and the emission of Ce3+ and Eu2+ ions at different Ca sites were identified and discussed. Since bright blue and yellow emissions were observed from Ce3+ and Eu2+ ions monodoped CBPO under n-UV excitation, respectively. They were codoped into the CBPO for designing energy transfer from Ce3+ to Eu2+ to improve the luminescence efficiency of Eu2+. In addition, Tb3+ ions were added into the CBPO:Ce3+ system for realizing highly efficient green emission. The energy transfer mechanisms from Ce3+ to Eu2+/Tb3+ ions were discussed. Interestingly, the incorporation of Mn2+ ions into the CBPO:Ce3+ system enhanced the blue emission of Ce3+ ions due to the modification of crystal lattice. Finally, the thermal stability of CBPO:Ce3+, Eu2+/Tb3+/Mn2+ phosphors were investigated systematically and corresponding mechanisms were proposed. Based on these results, the as-prepared CBPO:Ce3+, Eu2+/Tb3+/Mn2+ phosphors can act as potential blue, yellow, green, and emission-tunable phosphors for n-UV based white LEDs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence and energy transfer properties of color-tunable Sr4La(PO4)3O: Ce3+, Tb3+, Mn2+ phosphors for WLEDs

Ju Cheng, Jia Zhang, Jian Lu, Hongchao Zhang, Sardar Maryam, Zhonghua Shen, Xiaowu Ni, Xintian Bian, Pengcheng Ma, and Jin Shi
Opt. Mater. Express 8(7) 1850-1862 (2018)

White light obtainment via tricolor luminescent centers and energy transfer in Ca3ZrSi2O9:Eu3+,Bi3+,Tb3+ phosphors

Zhenzhen Zhou, Guanghui Liu, Jia Ni, Wanlu Liu, and Qian Liu
Opt. Mater. Express 8(11) 3526-3542 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
    [Crossref]
  2. N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
    [Crossref]
  3. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [Crossref]
  4. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
    [Crossref]
  5. C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
    [Crossref] [PubMed]
  6. C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
    [Crossref]
  7. S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
    [Crossref]
  8. W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
    [Crossref]
  9. R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
    [Crossref]
  10. W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
    [Crossref]
  11. W. B. Park, S. P. Singh, and K. S. Sohn, “Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.,” J. Am. Chem. Soc. 136(6), 2363–2373 (2014).
    [Crossref] [PubMed]
  12. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
    [Crossref] [PubMed]
  13. N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).
  14. B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
    [Crossref]
  15. W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
    [Crossref]
  16. Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
    [Crossref] [PubMed]
  17. C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
    [Crossref] [PubMed]
  18. J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
    [Crossref]
  19. J. S. Lee, S. Unithrattil, and W. B. Im, “Color-tunable binary solid-solution phosphor, (Sr3SiO5)1−x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+,” J. Alloys Compd. 555, 297–303 (2013).
    [Crossref]
  20. M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
    [Crossref]
  21. N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
    [Crossref]
  22. N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
    [Crossref]
  23. H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
    [Crossref]
  24. M. Y. Chen, Z. G. Xia, and Q. L. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(16), 4197–4204 (2015).
    [Crossref]
  25. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  26. P. Dorenbos, “A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds,” ECS Solid State Letters 2(2), R3001–R3011 (2012).
    [Crossref]
  27. C. K. Jørgensen, “Modern aspects of ligand field theory,” Amsterdam: North-Holland, (1971).
  28. W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
    [Crossref]
  29. N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
    [Crossref] [PubMed]
  30. Y. Tan and C. Shi, “Ce3+ → Eu2+ energy transfer in BaLiF3 phosphor,” J. Phys. Chem. Solids 60(11), 1805–1810 (1999).
    [Crossref]
  31. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
    [Crossref]
  32. Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
    [Crossref]
  33. K.-S. Sohn, B. Lee, R.-J. Xie, and N. Hirosaki, “Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+.,” Opt. Lett. 34(21), 3427–3429 (2009).
    [Crossref] [PubMed]
  34. C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
    [Crossref] [PubMed]
  35. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
    [Crossref]
  36. G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
    [Crossref]
  37. L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
    [Crossref]
  38. S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
    [Crossref] [PubMed]
  39. N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
    [Crossref] [PubMed]

2015 (4)

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

M. Y. Chen, Z. G. Xia, and Q. L. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(16), 4197–4204 (2015).
[Crossref]

2014 (5)

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

W. B. Park, S. P. Singh, and K. S. Sohn, “Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.,” J. Am. Chem. Soc. 136(6), 2363–2373 (2014).
[Crossref] [PubMed]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).

2013 (8)

B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
[Crossref]

J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
[Crossref]

J. S. Lee, S. Unithrattil, and W. B. Im, “Color-tunable binary solid-solution phosphor, (Sr3SiO5)1−x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+,” J. Alloys Compd. 555, 297–303 (2013).
[Crossref]

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

2012 (3)

P. Dorenbos, “A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds,” ECS Solid State Letters 2(2), R3001–R3011 (2012).
[Crossref]

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

2011 (1)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

2010 (5)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

2009 (3)

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

K.-S. Sohn, B. Lee, R.-J. Xie, and N. Hirosaki, “Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+.,” Opt. Lett. 34(21), 3427–3429 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

2007 (2)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[Crossref]

2006 (2)

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

2005 (1)

W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
[Crossref]

2000 (1)

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
[Crossref]

1999 (1)

Y. Tan and C. Shi, “Ce3+ → Eu2+ energy transfer in BaLiF3 phosphor,” J. Phys. Chem. Solids 60(11), 1805–1810 (1999).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Atuchin, V. V.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

Birkel, A.

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Bithell, E. G.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

Bithellc, E. G.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

Brgoch, J.

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Brinkley, S.

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

Chan, T.-S.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Cheetham, A. K.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

Cheethamd, A. K.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

Chen, J. M.

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Chen, M. Y.

M. Y. Chen, Z. G. Xia, and Q. L. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(16), 4197–4204 (2015).
[Crossref]

Chen, T. M.

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
[Crossref]

Chen, W. B.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Chen, W. T.

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Chen, W.-T.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Chiang, C.-Y.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Chiu, Y. C.

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

Denault, K. A.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

DenBaars, S. P.

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

Ding, X.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Dorenbos, P.

P. Dorenbos, “A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds,” ECS Solid State Letters 2(2), R3001–R3011 (2012).
[Crossref]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
[Crossref]

Fellows, N. N.

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

Funahashi, S.

N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).

Geng, D. L.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

George, N. C.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Guo, H. J.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Guo, N.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Hanzawa, H.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Hecht, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Henß, A.-K.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Hintzen, H. T.

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Hirosaki, N.

N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

K.-S. Sohn, B. Lee, R.-J. Xie, and N. Hirosaki, “Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+.,” Opt. Lett. 34(21), 3427–3429 (2009).
[Crossref] [PubMed]

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[Crossref]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

Hong, B. C.

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Horikawa, T.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Hu, J.

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

Hu, S. F.

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Huang, C. H.

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

Huang, Y.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Im, W. B.

J. S. Lee, S. Unithrattil, and W. B. Im, “Color-tunable binary solid-solution phosphor, (Sr3SiO5)1−x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+,” J. Alloys Compd. 555, 297–303 (2013).
[Crossref]

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

Kang, X. J.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Kijima, N.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Kim, J. S.

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

Kim, Y.

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

Komuro, N.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

Kuo, T. W.

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

Lee, B.

Lee, J. S.

J. S. Lee, S. Unithrattil, and W. B. Im, “Color-tunable binary solid-solution phosphor, (Sr3SiO5)1−x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+,” J. Alloys Compd. 555, 297–303 (2013).
[Crossref]

Lee, S. H.

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

Li, G.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Li, G. G.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Li, J. G.

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

Li, W.-H.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Li, Y.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

Li, Y. Q.

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

Li, Y. Y.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Lian, H. Z.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Lian, Z. P.

J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
[Crossref]

Lin, C.-C.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Lin, J.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Liu, K.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Liu, L. H.

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

Liu, Q. L.

M. Y. Chen, Z. G. Xia, and Q. L. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(16), 4197–4204 (2015).
[Crossref]

Liu, R. S.

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Liu, R.-S.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Liu, W. R.

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

Llobet, A.

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Luo, L. Y.

W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
[Crossref]

Luo, Y.

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

Ma, C. G.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Machida, K.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Mikami, M.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

Mikhailovsky, A.

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

Mikhailovsky, A. A.

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Mitomo, M.

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

Molokeev, M. S.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

Page, K.

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Park, B.

B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
[Crossref]

Park, H. L.

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

Park, J. H.

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

Park, W. B.

W. B. Park, S. P. Singh, and K. S. Sohn, “Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.,” J. Am. Chem. Soc. 136(6), 2363–2373 (2014).
[Crossref] [PubMed]

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Piao, X.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Poelman, D.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Pust, P.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Scheu, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schmidt, P. J.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schnick, W.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Seshadri, R.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

Shang, M. M.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shen, D. Z.

J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
[Crossref]

Shen, G. Q.

J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
[Crossref]

Sheu, H. S.

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Sheu, H.-S.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Shi, C.

Y. Tan and C. Shi, “Ce3+ → Eu2+ energy transfer in BaLiF3 phosphor,” J. Phys. Chem. Solids 60(11), 1805–1810 (1999).
[Crossref]

Shimomura, Y.

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Singh, S. P.

W. B. Park, S. P. Singh, and K. S. Sohn, “Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.,” J. Am. Chem. Soc. 136(6), 2363–2373 (2014).
[Crossref] [PubMed]

B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
[Crossref]

Smet, P. F.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Sohn, K. S.

W. B. Park, S. P. Singh, and K. S. Sohn, “Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.,” J. Am. Chem. Soc. 136(6), 2363–2373 (2014).
[Crossref] [PubMed]

B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
[Crossref]

Sohn, K.-S.

Son, S. M.

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

Song, Y.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Suehiro, T.

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

Sun, J. F.

J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
[Crossref]

Sun, X. D.

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

Takeda, T.

N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

Tan, Y.

Y. Tan and C. Shi, “Ce3+ → Eu2+ energy transfer in BaLiF3 phosphor,” J. Phys. Chem. Solids 60(11), 1805–1810 (1999).
[Crossref]

Tücks, A.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Unithrattil, S.

J. S. Lee, S. Unithrattil, and W. B. Im, “Color-tunable binary solid-solution phosphor, (Sr3SiO5)1−x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+,” J. Alloys Compd. 555, 297–303 (2013).
[Crossref]

Wang, C.

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

Wang, C.-W.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Wang, J.

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

Wang, N. S.

W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
[Crossref]

Wang, S. S.

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

Wang, Y.

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

Wang, Y. H.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Weiler, V.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wiechert, D.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wochnik, A. S.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wu, Q.

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

Xia, Z.

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

Xia, Z. G.

M. Y. Chen, Z. G. Xia, and Q. L. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(16), 4197–4204 (2015).
[Crossref]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Xie, R. J.

N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[Crossref]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

Xie, R.-J.

Xu, F. F.

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

Yang, D. M.

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Yang, M.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Yang, W. J.

W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
[Crossref]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Yeh, C. W.

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

Yeh, Y. T.

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

Yoon, C.

B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
[Crossref]

You, H.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Zeng, W.

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Zhang, Y.

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

Zhao, Z.

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

Zheng, Y.

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

Zhou, W. Z.

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Zhu, G.

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

C. H. Huang, T. W. Kuo, and T. M. Chen, “Novel red-emitting phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with energy transfer for fluorescent lamp application,” ACS Appl. Mater. Interfaces 2(5), 1395–1399 (2010).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Annu. Rev. Mater. Res. (1)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43(1), 481–501 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Appl. Phys. Lett. 89(22), 221916 (2006).
[Crossref]

Chem. Mater. (8)

N. Hirosaki, T. Takeda, S. Funahashi, and R. J. Xie, “Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle-diagnosis approach,” Chem. Mater. 26, 4280–4288 (2014).

W. B. Im, S. Brinkley, J. Hu, A. Mikhailovsky, S. P. DenBaars, and R. Seshadri, “Sr2.975−xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting,” Chem. Mater. 22(9), 2842–2849 (2010).
[Crossref]

R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006).
[Crossref]

W. B. Im, N. N. Fellows, S. P. DenBaars, R. Seshadri, and Y. Kim, “LaSr2AlO5, a versatile host compound for Ce3+-based yellow phosphors: structural tuning of optical properties and use in solid state white lighting,” Chem. Mater. 21(13), 2957–2966 (2009).
[Crossref]

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[Crossref]

W. J. Yang, L. Y. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UV LED,” Chem. Mater. 17(15), 3883–3888 (2005).
[Crossref]

G. G. Li, C.-C. Lin, W.-T. Chen, M. S. Molokeev, V. V. Atuchin, C.-Y. Chiang, W. Z. Zhou, C.-W. Wang, W.-H. Li, H.-S. Sheu, T.-S. Chan, C. G. Ma, and R.-S. Liu, “Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms,” Chem. Mater. 26(9), 2991–3001 (2014).
[Crossref]

Dalton Trans. (1)

C. Wang, Z. Zhao, Q. Wu, G. Zhu, and Y. Wang, “Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu2+ by Mg2+ doping,” Dalton Trans. 44(22), 10321–10329 (2015).
[Crossref] [PubMed]

ECS Solid State Letters (1)

P. Dorenbos, “A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds,” ECS Solid State Letters 2(2), R3001–R3011 (2012).
[Crossref]

Inorg. Chem. (2)

N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, and Y. Zheng, “Ca9Lu(PO4)7:Eu2+,Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes,” Inorg. Chem. 49(23), 10907–10913 (2010).
[Crossref] [PubMed]

N. C. George, A. Birkel, J. Brgoch, B. C. Hong, A. A. Mikhailovsky, K. Page, A. Llobet, and R. Seshadri, “Average and local structural origins of the optical properties of the nitride phosphor La3-xCexSi6N11 (0 < x ≤ 3),” Inorg. Chem. 52(23), 13730–13741 (2013).
[Crossref] [PubMed]

J. Alloys Compd. (1)

J. S. Lee, S. Unithrattil, and W. B. Im, “Color-tunable binary solid-solution phosphor, (Sr3SiO5)1−x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+,” J. Alloys Compd. 555, 297–303 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, and X. D. Sun, “Temperature dependent luminescence of yellow-emitting α-Sialon:Eu2+ oxynitride phosphors for white light-emitting diodes,” J. Am. Ceram. Soc. 92(11), 2668–2673 (2009).
[Crossref]

J. Am. Chem. Soc. (3)

S. S. Wang, W. T. Chen, Y. Li, J. Wang, H. S. Sheu, and R. S. Liu, “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice,” J. Am. Chem. Soc. 135(34), 12504–12507 (2013).
[Crossref] [PubMed]

C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, and H. T. Hintzen, “Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes,” J. Am. Chem. Soc. 134(34), 14108–14117 (2012).
[Crossref] [PubMed]

W. B. Park, S. P. Singh, and K. S. Sohn, “Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.,” J. Am. Chem. Soc. 136(6), 2363–2373 (2014).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting Diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (5)

B. Park, S. P. Singh, C. Yoon, and K. S. Sohn, “Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(9), 1832–1839 (2013).
[Crossref]

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithell, and A. K. Cheetham, “Synthesis, structure and optical properties of europium doped calcium barium phosphate – a novel phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6084–6089 (2014).
[Crossref]

N. Komuro, M. Mikami, Y. Shimomura, E. G. Bithellc, and A. K. Cheethamd, “Synthesis, structure and optical properties of cerium-doped calcium barium phosphate – a novel blue-green phosphor for solid-state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(1), 204–210 (2015).
[Crossref]

H. J. Guo, W. B. Chen, W. Zeng, G. Li, Y. H. Wang, Y. Y. Li, Y. Li, and X. Ding, “Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+,Ho3+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5844–5850 (2015).
[Crossref]

M. Y. Chen, Z. G. Xia, and Q. L. Liu, “Luminescence properties and energy transfer of Ce3+/Tb3+ co-doped Ca6Ba(PO4)4O phosphor for near-UV pumped light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(16), 4197–4204 (2015).
[Crossref]

J. Phys. Chem. C (2)

M. M. Shang, G. G. Li, D. L. Geng, D. M. Yang, X. J. Kang, Y. Zhang, H. Z. Lian, and J. Lin, “Blue emitting Ca8La2(PO4)6O2:Ce3+ /Eu2+ phosphors with high color purity and brightness for white LED: Soft-chemical synthesis, luminescence, and energy transfer properties,” J. Phys. Chem. C 116(18), 10222–10231 (2012).
[Crossref]

C. H. Huang, W. R. Liu, and T. M. Chen, “Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation,” J. Phys. Chem. C 114(43), 18698–18701 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

Y. Tan and C. Shi, “Ce3+ → Eu2+ energy transfer in BaLiF3 phosphor,” J. Phys. Chem. Solids 60(11), 1805–1810 (1999).
[Crossref]

Mater. Sci. Eng. Rep. (1)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep. 71(1), 1–34 (2010).
[Crossref]

Nat. Mater. (1)

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
[Crossref]

RSC Advances (2)

W. R. Liu, C. H. Huang, C. W. Yeh, Y. C. Chiu, Y. T. Yeh, and R. S. Liu, “Single-phased white-light-emitting KCaGd(PO4)2:Eu2+,Tb3+,Mn2+ phosphors for LED applications,” RSC Advances 3(23), 9023–9028 (2013).
[Crossref]

J. F. Sun, Z. P. Lian, G. Q. Shen, and D. Z. Shen, “Blue–white–orange color-tunable luminescence of Ce3+/Mn2+-codoped NaCaBO3 via energy transfer: Potential single-phase white-light-emitting phosphors,” RSC Advances 3(40), 18395–18405 (2013).
[Crossref]

Sci. Rep. (1)

Z. Xia, Y. Zhang, M. S. Molokeev, V. V. Atuchin, and Y. Luo, “Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors,” Sci. Rep. 3, 3310 (2013).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[Crossref]

Other (1)

C. K. Jørgensen, “Modern aspects of ligand field theory,” Amsterdam: North-Holland, (1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The XRD patterns of CBPO:Ce3+, Eu2+/Tb3+/Mn2+ samples with different doping ions. The standard Ca6BaP4O17 data is shown as a reference [21, 22]. The inset shows the SEM image of the representative CBPO:2%Ce3+, 2%Eu2+ sample. (b) The XRD patterns of CBPO:Ce3+/Eu2+/Tb3+ samples with different Ce3+/Eu2+/Tb3+-doping concentrations.
Fig. 2
Fig. 2 The Rietveld fit of (a) CBPO:2%Ce3+, 2%Eu2+, (b) CBPO:2%Ce3+, 8%Tb3+ and (c) CBPO:2%Ce3+, 5%Mn2+ by the GSAS program. Experimental and calculated XRD patterns, their difference, and baseline, are depicted with black crosses, red solid line, blue solid line, and green solid line, respectively. The short vertical lines show the positions of Bragg reflections of the calculated XRD pattern. (d) is crystal structure schematic diagram of Ca6BaP4O17, and the Ca1 and Ca2 polyhedrons.
Fig. 3
Fig. 3 (a) The PLE and PL spectra of CBPO:2%Ce3+ (blue line) and CBPO:2%Eu2+ (orange line). The orange shadow is the overlap part of the PL of CBPO:2%Ce3+ and the PLE of CBPO:2%Eu2+. (b) and (c) are the normal and normalized PL spectra of CBPO:2%Ce3+, x%Eu2+ (x = 0-4) samples. The inset in (b) shows the relative emission intensity of CBPO:2%Eu2+ and CBPO:2%Ce3+, 2%Eu2+. (d) The lifetime decay curves and fitting curves (green lines) of Ce3+ emission monitored at 378 nm (excitation) and 471 nm (emission) for CBPO:2%Ce3+, x%Eu2+ (x = 0, 0.1, 0.5, 1, 2, 3, 4%). The Gaussian fitting spectra of (e) CBPO:2%Ce3+ and (f) CBPO:2%Eu2+. EX and EM means the monitoring wavelengths for obtaining the emission spectra and excitation spectra, respectively.
Fig. 4
Fig. 4 (a) The energy transfer efficiency ( η T ) of CBPO:2%Ce3+, x%Eu2+ (x = 0–4) and (b) CBPO:2%Ce3+, y%Tb3+ (x = 0–15) samples (EX 378 nm). The dependence of τS0/τS of Ce3+ on (b) CCe + Eu6/3 × 103, (c) CCe + Eu8/3 × 104 and (d) CCe + Eu10/3 × 105; (e) CCe + Tb6/3 × 103, (f) CCe + Tb8/3 × 104 and (g) CCe + Tb10/3 × 105.
Fig. 5
Fig. 5 (a) The PLE and PL spectra of CBPO:2%Ce3+ (blue line, EM 471 nm; EX 378 nm) and CBPO:2%Tb3+ (green line, EM 542 nm; EX 254 nm). (b)The PLE (EX 471 nm, black dot line; EM 542 nm, black solid line) and PL spectra (EX 378 nm) of CBPO:2%Ce3+, 8%Tb3+sample. (c) The PL spectra of CBPO:2%Ce3+, y%Tb3+ (x = 0-10) samples (EX 378 nm). (d) The decay curves of Ce3+ emission monitored at 378 nm (excitation) and 471 nm (emission) for CBPO:2%Ce3+, y%Tb3+ (x = 0, 0.5, 1, 2, 3, 4, 8, 10).
Fig. 6
Fig. 6 The PLE and PL spectra of CBPO: 2%Ce3+, z%Mn2+ (z = 0, 0.5, 1, 2, 3, 4) (EM 471 nm, EX 378 nm). The inset is the relative emission intensity of CBPO: 2%Ce3+, z%Mn2+ with Mn2+ contents, and the luminescent photos of CBPO: 2%Ce3+ and CBPO: 2%Ce3+, 3%Mn2+ with CIE color coordinates (0.18, 0.27) and (0.19, 0.27), respectively under 365 nm UV lamp.
Fig. 7
Fig. 7 The CIE color coordinates diagram for CBPO:2%Ce3+, x%Eu2+ (x = 0, 0.1, 0.3, 0.5, 1, 2, 4, 8, and 15), and CBPO:2%Ce3+, y%Tb3+ (y = 1, 2, 3, 4, 8, and 15). The insets are corresponding digital photographs of these samples under 365 nm UV lamp.
Fig. 8
Fig. 8 The PL spectra of (a) CBPO:2%Ce3+, (b) CBPO:2%Eu2+, and (d) CBPO:2%Ce3+, 2%Eu2+ at different temperature (25-250°C). (c) Configuration coordinate diagram showing the thermal quenching caused by Stokes shift in CBPO:2%Eu2+. (SS, Stokes shift; C, crossing point; ΔE, thermal energy). (e) The dependence of emission intensity of CBPO:2%Ce3+, CBPO:2%Eu2+, CBPO:2%Ce3+, 2%Eu2+, and CBPO:2%Ce3+, 3%Mn2+ on temperature from 25°C to 250°C. All samples are excited with 378 nm UV.
Fig. 9
Fig. 9 The PL spectra of (a) CBPO:2%Tb3+, (b) CBPO:2%Ce3+, 2%Tb3+, (c) CBPO:2%Ce3+, 4%Tb3+, and (d) CBPO:2%Ce3+, 10%Tb3+samples at different temperature (25˗250°C) excited with 378 nm UV. The inset in (c) is the magnified spectra at 450˗470 nm. (e) The PL emission intensity ofCBPO:2%Ce3+, CBPO:2%Tb3+, and CBPO:2%Ce3+, x%Tb3+(x = 2, 4, 10) samples at temperatures from 25°C to 250°C.

Tables (1)

Tables Icon

Table 1 CIE Color Coordinates (X, Y) and QYs of CBPO:Ce3+, Eu2+/Tb3+/Mn2+ (EX 378 nm).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D q = 1 6 Z e 2 r 4 R 5
I ( t ) = I 0 + A 1 exp ( t / τ 1 ) + A 2 exp ( t / τ 2 )
τ * = ( A 1 τ 1 2 + A 2 τ 2 2 ) / ( A 1 τ 1 + A 2 τ 2 )
η T = 1 τ S / τ S 0
R C 2 [ 3 V 4 π X C N ] 1 / 3
η S O / η S x n / 3
τ S O / τ S x n / 3
P S A ( d d ) = 3.024 × 10 12 f q R 6 τ S f S ( E ) F A ( E ) E 4
R C 6 = 3.024 × 10 12 f q F s ( E ) F A ( E ) d E E 4

Metrics