Abstract

The optimization of a slot waveguide for any specific application requires a study of the modal characteristics for a wide range of design parameters. Rigorous numerical methods, such as the finite element method (FEM), are time consuming and require a large amount of memory. In this paper, a simple semi-analytical method is used to analyze silicon slot waveguides and to optimize the performance of the waveguide for maximum power confinement in the slot, minimum effective mode area of the slot and to obtain flat dispersion characteristics. The results obtained by the present method agree well with the rigorous numerical results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semi-vector iterative method for modes of high-index-contrast nanoscale waveguides

K. Gehlot and A. Sharma
Opt. Express 21(8) 9807-9812 (2013)

Optical sensing by optimized silicon slot waveguides

Francesco Dell’Olio and Vittorio M. N. Passaro
Opt. Express 15(8) 4977-4993 (2007)

Analytical modal analysis of bent slot waveguides

Kirankumar R. Hiremath
J. Opt. Soc. Am. A 26(11) 2321-2326 (2009)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, Q. Xu, C. A. Barios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref] [PubMed]
  2. Q. Xu, V. Almeida, R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref] [PubMed]
  3. H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
    [Crossref]
  4. P. Mullner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett. 18, 2557–2559 (2006).
    [Crossref]
  5. P. Sanchis, B. Javier, M. Alejandro, and M. Javier, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 251298–1305 (2007).
    [Crossref]
  6. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
    [Crossref] [PubMed]
  7. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
    [Crossref] [PubMed]
  8. Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281, 5151–5155 (2008).
    [Crossref]
  9. S. Mas, J. Caraquitena, J. V. Galn, P. Sanchis, and J. Mart, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express 18, 20839–20844 (2010).
    [Crossref] [PubMed]
  10. A. Sharma, “On approximate theories of single-mode rectangular waveguides,” Opt. Quant. Electron. 21, 517–520 (1989).
    [Crossref]
  11. P. Bindal and A. Sharma, “Modelling of photonic crystal waveguides: a simple and accurate approach,” Opt. Quantum Electron. 42, 435–446 (2011).
    [Crossref]
  12. K. Gehlot and A. Sharma, “Semi-vector iterative method for modes of high-index-contrast nanoscale waveguides,” Opt. Express 219807–9812 (2013).
    [Crossref] [PubMed]
  13. K. S. Chiang, “Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 44, 692–700 (1996).
    [Crossref]
  14. K. Gehlot and A. Sharma, “Modal analysis of silicon-based slot waveguide using approximate semi-vector analysis,” in Workshop on Recent Advances in Photonics 2013, B. P. Pal, A. Sharma, and R. K. Varshney, eds. (IEEE, 2013), pp. 1–2.
  15. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 234477–4485 (1984).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

2011 (1)

P. Bindal and A. Sharma, “Modelling of photonic crystal waveguides: a simple and accurate approach,” Opt. Quantum Electron. 42, 435–446 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281, 5151–5155 (2008).
[Crossref]

2007 (2)

2006 (1)

P. Mullner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett. 18, 2557–2559 (2006).
[Crossref]

2004 (2)

1996 (1)

K. S. Chiang, “Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 44, 692–700 (1996).
[Crossref]

1989 (1)

A. Sharma, “On approximate theories of single-mode rectangular waveguides,” Opt. Quant. Electron. 21, 517–520 (1989).
[Crossref]

1984 (1)

Alejandro, M.

Almeida, V.

Almeida, V. R.

Barios, C. A.

Bindal, P.

P. Bindal and A. Sharma, “Modelling of photonic crystal waveguides: a simple and accurate approach,” Opt. Quantum Electron. 42, 435–446 (2011).
[Crossref]

Caraquitena, J.

Chen, S.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Chiang, K. S.

K. S. Chiang, “Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 44, 692–700 (1996).
[Crossref]

Freude, W.

Galn, J. V.

Gehlot, K.

K. Gehlot and A. Sharma, “Semi-vector iterative method for modes of high-index-contrast nanoscale waveguides,” Opt. Express 219807–9812 (2013).
[Crossref] [PubMed]

K. Gehlot and A. Sharma, “Modal analysis of silicon-based slot waveguide using approximate semi-vector analysis,” in Workshop on Recent Advances in Photonics 2013, B. P. Pal, A. Sharma, and R. K. Varshney, eds. (IEEE, 2013), pp. 1–2.

Hainberger, R.

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
[Crossref] [PubMed]

P. Mullner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett. 18, 2557–2559 (2006).
[Crossref]

Iqbal, M.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281, 5151–5155 (2008).
[Crossref]

Jacome, L.

Javier, B.

Javier, M.

Kee, J. S.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Koos, C.

Leuthold, J.

Lipson, M.

Liu, J.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281, 5151–5155 (2008).
[Crossref]

Lo, G. Q.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Mart, J.

Mas, S.

Muellner, P.

Mullner, P.

P. Mullner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett. 18, 2557–2559 (2006).
[Crossref]

Panepucci, R.

Poulton, C.

Sanchis, P.

Sharma, A.

K. Gehlot and A. Sharma, “Semi-vector iterative method for modes of high-index-contrast nanoscale waveguides,” Opt. Express 219807–9812 (2013).
[Crossref] [PubMed]

P. Bindal and A. Sharma, “Modelling of photonic crystal waveguides: a simple and accurate approach,” Opt. Quantum Electron. 42, 435–446 (2011).
[Crossref]

A. Sharma, “On approximate theories of single-mode rectangular waveguides,” Opt. Quant. Electron. 21, 517–520 (1989).
[Crossref]

K. Gehlot and A. Sharma, “Modal analysis of silicon-based slot waveguide using approximate semi-vector analysis,” in Workshop on Recent Advances in Photonics 2013, B. P. Pal, A. Sharma, and R. K. Varshney, eds. (IEEE, 2013), pp. 1–2.

Song, J.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Tatian, B.

Wellenzohn, M.

Xu, Q.

Yu, M.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Zhang, H.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Zhang, J.

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

Zheng, Z.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281, 5151–5155 (2008).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

H. Zhang, J. Zhang, S. Chen, J. Song, J. S. Kee, M. Yu, and G. Q. Lo, “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photon. Technol. Lett. 24, 10–12 (2012).
[Crossref]

P. Mullner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett. 18, 2557–2559 (2006).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

K. S. Chiang, “Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 44, 692–700 (1996).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281, 5151–5155 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Quant. Electron. (1)

A. Sharma, “On approximate theories of single-mode rectangular waveguides,” Opt. Quant. Electron. 21, 517–520 (1989).
[Crossref]

Opt. Quantum Electron. (1)

P. Bindal and A. Sharma, “Modelling of photonic crystal waveguides: a simple and accurate approach,” Opt. Quantum Electron. 42, 435–446 (2011).
[Crossref]

Other (1)

K. Gehlot and A. Sharma, “Modal analysis of silicon-based slot waveguide using approximate semi-vector analysis,” in Workshop on Recent Advances in Photonics 2013, B. P. Pal, A. Sharma, and R. K. Varshney, eds. (IEEE, 2013), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic of a symmetric vertical slot waveguide. (b) The schematic of the x-waveguide, and (c) the y-waveguide for the application of the SV-Vopt method.
Fig. 2
Fig. 2 The modal E-fields of (a) x-waveguide, χ(x), (b) y-waveguide, ϕ (y), and (c) the modal E-field of the slot waveguide, Ex = χ(x)ϕ(y), obtained in the converged iteration of the SV-Vopt method. The cross-section of the corresponding waveguides is shown with dashed lines in each figure.
Fig. 3
Fig. 3 Contour plot of Pslot, (a) for a planar slot waveguide, (i.e. h = ∞), and (b) for a vertical slot waveguide of height h = 600 nm. (c) Optimized Pslot and (d) the optimized core widths w as a function of h. The FEM results [4] are shown with square marker.
Fig. 4
Fig. 4 Contour plot of Aeff, (a) for ws = 50 nm and (b) for ws = 100 nm. Effect of ws on (c) minimized Aeff and (d) the optimized core height, h and width, w.
Fig. 5
Fig. 5 The GVD for slot waveguide with (a) area, A = 1 μm2, (b) area, A = 0.5 μm2, and (c) area, A = 0.1 μm2. (d) For A = 0.5 μm2, the optmization of the slot fill factor to obtain flat dispersion characteristics. Common legends are used for Fig. (a)–(c) and the results of BPM [9] are shown with circular markers.

Tables (1)

Tables Icon

Table 1 The neff of Si slot waveguide obtained by the FEM, SV-Vopt method and the VEIM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n y 2 ( y ) = ( n 2 n x 2 ) n x 2 χ 2 d x 1 k 2 χ d ( n x 2 χ ) d x ln ( n 2 / n x 2 ) x d x
n x 2 ( x ) = ( n 2 n y 2 ) ϕ 2 d y 1 k 2 [ χ ( n x 2 χ ) x ln ( n 2 / n x 2 ) x d x ] ϕ 2 d y

Metrics