Abstract

An investigation of Tm-Ho energy transfer in Tm(5at.%),Ho(0.4at.%):KYW single crystal by two independent techiques was performed. Based on fluorescence dynamics measurements, energy transfer parameters P71 and P28 for direct (Tm→Ho) and back (Ho→Tm) transfers, respectively, as well as equilibrium constant Θ were evaluated. The obtained results were supported by calculation of microscopic interaction parameters according to the Förster-Dexter theory for a dipole-dipole interaction. Diode-pumped continuous-wave operation of Tm,Ho:KYW microchip laser was demonstrated, for the first time to our knowledge. Maximum output power of 77 mW at 2070 nm was achieved at the fundamental TEM00 mode.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microchip laser operation of Tm,Ho:KLu(WO4)2 crystal

Pavel Loiko, Josep Maria Serres, Xavier Mateos, Konstantin Yumashev, Nikolai Kuleshov, Valentin Petrov, Uwe Griebner, Magdalena Aguiló, and Francesc Díaz
Opt. Express 22(23) 27976-27984 (2014)

Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

Maxim Gaponenko, Nikolay Kuleshov, and Thomas Südmeyer
Opt. Express 22(10) 11578-11582 (2014)

Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber

J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz
Appl. Opt. 55(14) 3757-3763 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010).
  2. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
    [Crossref]
  3. M. E. Storm and W. W. Rohrbach, “Single-longitudinal-mode lasing of Ho:Tm:YAG at 2.091 microm,” Appl. Opt. 28(23), 4965–4967 (1989).
    [Crossref] [PubMed]
  4. G. L. Bourdet and G. Lescroart, “Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser,” Appl. Opt. 38(15), 3275–3281 (1999).
    [Crossref] [PubMed]
  5. J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
    [Crossref]
  6. G. L. Bourdet and R. A. Muller, “Tm,Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70(3), 345–349 (2000).
    [Crossref]
  7. B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
    [Crossref]
  8. R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
    [Crossref]
  9. B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
    [Crossref]
  10. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Microchip laser operation of Tm,Ho:KLu(WO₄)₂ crystal,” Opt. Express 22(23), 27976–27984 (2014).
    [Crossref] [PubMed]
  11. A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
    [Crossref]
  12. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
    [Crossref] [PubMed]
  13. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75(2), 89–98 (1997).
    [Crossref]
  14. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90(1-2), 39–48 (2000).
    [Crossref]
  15. N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
    [Crossref]
  16. S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
    [Crossref]
  17. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
    [Crossref]
  18. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836 (1953).
    [Crossref]
  19. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic Press, 2006).
  20. I. Z. Steinberg, “Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides,” Annu. Rev. Biochem. 40(1), 83–114 (1971).
    [Crossref] [PubMed]
  21. S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
    [Crossref]
  22. A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
    [Crossref]
  23. A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
    [Crossref]
  24. M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
    [Crossref]

2014 (1)

2012 (1)

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

2011 (2)

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

2010 (2)

2009 (1)

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

2007 (1)

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

2001 (1)

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

2000 (3)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90(1-2), 39–48 (2000).
[Crossref]

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

G. L. Bourdet and R. A. Muller, “Tm,Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70(3), 345–349 (2000).
[Crossref]

1999 (1)

1997 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75(2), 89–98 (1997).
[Crossref]

1996 (1)

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

1993 (1)

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

1992 (2)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[Crossref]

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

1991 (1)

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

1989 (1)

1971 (1)

I. Z. Steinberg, “Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides,” Annu. Rev. Biochem. 40(1), 83–114 (1971).
[Crossref] [PubMed]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

Aguiló, M.

Arimoto, Y.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Auyeung, R. C. Y.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90(1-2), 39–48 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75(2), 89–98 (1997).
[Crossref]

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Bigotta, S.

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

Boulon, G.

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

Bourdet, G. L.

G. L. Bourdet and R. A. Muller, “Tm,Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70(3), 345–349 (2000).
[Crossref]

G. L. Bourdet and G. Lescroart, “Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser,” Appl. Opt. 38(15), 3275–3281 (1999).
[Crossref] [PubMed]

Bovero, E.

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

Bowman, S. R.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

Brenier, A.

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

Brown, C. T.

Brown, C. T. A.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Calvez, S.

Cavalli, E.

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

Chen, F.

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

Cialdi, S.

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

Dawson, M. D.

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90(1-2), 39–48 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75(2), 89–98 (1997).
[Crossref]

Díaz, F.

Feldman, B. J.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

Filer, E. D.

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Fusari, F.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Gaponenko, M. S.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Griebner, U.

Gusakova, N. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Hara, H.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Izawa, J.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Jani, M. G.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[Crossref]

Ju, Y. L.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
[Crossref]

Kisel, V. E.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Kokta, M.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[Crossref]

Krupke, W. F.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Kuleshov, N.

Kuleshov, N. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Kurilchik, S. V.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Kway, W. L.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Lagatsky, A. A.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Lee, C. J.

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Lescroart, G.

Li, G.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

Loiko, P.

Loiko, P. A.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Lou, L.

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

Madej, C.

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

Mateos, X.

Meng, P. B.

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

Morrison, C. A.

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Muller, R. A.

G. L. Bourdet and R. A. Muller, “Tm,Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70(3), 345–349 (2000).
[Crossref]

Nakajima, H.

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Pavlyuk, A. A.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Payne, S. A.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Pédrini, C.

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

Petrin, R. R.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[Crossref]

Petrov, V.

Powell, R. C.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[Crossref]

Rohrbach, W. W.

Searles, S. K.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

Serres, J. M.

Sibbett, W.

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Smith, L. K.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Steinberg, I. Z.

I. Z. Steinberg, “Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides,” Annu. Rev. Biochem. 40(1), 83–114 (1971).
[Crossref] [PubMed]

Storm, M. E.

Tassano, J. B.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Toncelli, A.

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

Tonelli, M.

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

Tucker, J. E.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90(1-2), 39–48 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75(2), 89–98 (1997).
[Crossref]

Wang, Q.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

Wang, Y. Z.

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
[Crossref]

Wang, Z. G.

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
[Crossref]

Winings, M. J.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

Wu, C. T.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
[Crossref]

Yao, B. Q.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

Yasukevich, A. S.

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

Yumashev, K.

Yumashev, K. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Zannoni, E.

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

Zhang, C. H.

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

Zhou, R. L.

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
[Crossref]

Annu. Rev. Biochem. (1)

I. Z. Steinberg, “Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides,” Annu. Rev. Biochem. 40(1), 83–114 (1971).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (3)

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

G. L. Bourdet and R. A. Muller, “Tm,Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70(3), 345–349 (2000).
[Crossref]

A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, “Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm,Ho:KYW laser crystal,” Appl. Phys. B 97(2), 321–326 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers. I. Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, “Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27(9), 2142–2149 (1991).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

J. Lumin. (4)

A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, and S. Cialdi, “NIR luminescence and laser parameters of Ca3Sc2Ge3O12 garnet host crystals activated with Tm3+ and Ho3+,” J. Lumin. 92(3), 237–244 (2001).
[Crossref]

A. Brenier, G. Boulon, C. Madej, C. Pédrini, and L. Lou, “Kinetics of transfer and back transfer in thulium-holmium-doped Gd3Ga5O12(Ca, Zr) garnet,” J. Lumin. 54(5), 271–277 (1993).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “On the distribution of energy between the Tm 3F4 and Ho 5I7 manifolds in Tm-sensitized Ho luminescence,” J. Lumin. 75(2), 89–98 (1997).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90(1-2), 39–48 (2000).
[Crossref]

J. Phys. Condens. Matter (1)

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm→Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Laser Phys. (3)

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “Diode-end-pumped Tm,Ho:YVO4 Microchip Laser at Room Temperature,” Laser Phys. 21(4), 663–666 (2011).
[Crossref]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 microchip laser,” Laser Phys. 20(6), 1320–1323 (2010).
[Crossref]

B. Q. Yao, F. Chen, P. B. Meng, C. H. Zhang, and Y. Z. Wang, “Diode Pumped Operation of Tm,Ho:YAP Microchip Laser,” Laser Phys. 21(4), 674–676 (2011).
[Crossref]

Opt. Commun. (1)

J. Izawa, H. Nakajima, H. Hara, and Y. Arimoto, “A tunable and longitudinal mode oscillation of a Tm,Ho:YLF microchip laser using an external etalon,” Opt. Commun. 180(1-3), 137–140 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, and E. Bovero, “Spectroscopy and energy transfer parameters of Tm3+- and Ho3+-doped Ba2NaNb5O15 single crystals,” Opt. Mater. 30(1), 129–131 (2007).
[Crossref]

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[Crossref]

Other (2)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic Press, 2006).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Energy level transitions in Tm3+ and Ho3+ ions corresponding to absorption and fluorescence wavelengths used in the experiment.
Fig. 2
Fig. 2 Fluorescence dynamics of Tm(5at.%),Ho(0.4at.%):KY(WO4)2 crystal from 3F4 manifold of Tm3+ ions (a) and from 5I7 manifold of Ho3+ ions (b) under excitation of thulium at 1670 nm as well as from 5I7 manifold of Ho3+ ions (c) and 3F4 manifold of Tm3+ ions (d) under excitation of holmium at 1960 nm.
Fig. 3
Fig. 3 Fluorescence dynamics of Tm and Ho ions in KYW single crystal under excitation of thulium at 802 nm at early times (a) and at later times (b).
Fig. 4
Fig. 4 Thulium emission and holmium absorption (upper) and holmium emission and thulium absorption (lower) cross-section spectra in KYW single crystal.
Fig. 5
Fig. 5 Experimental setup of CW microchip laser.
Fig. 6
Fig. 6 Input-output characteristics of Tm,Ho:KYW laser (a) and gain spectra of Ho3+ ions in KYW (b).

Tables (2)

Tables Icon

Table 1 Energy transfer parameters in Tm,Ho-codoped KYW crystal compared to other host materials at room temperature

Tables Icon

Table 2 Energy transfer microparameters in Tm,Ho-codoped KYW crystal according to Förster-Dexter analysis compared to other host materials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( t ) n 2 ( 0 ) = ( β α + β ) exp ( t τ ) + ( α α + β ) exp ( ( α + β ) t ) ,
n 7 ( t ) n 2 ( 0 ) = ( α α + β ) exp ( t τ ) ( α α + β ) exp ( ( α + β ) t ) ,
n 7 ( t ) n 7 ( 0 ) = ( α α + β ) exp ( t τ ) + ( β α + β ) exp ( ( α + β ) t ) ,
n 2 ( t ) n 2 ( 0 ) = ( β α + β ) exp ( t τ ) ( β α + β ) exp ( ( α + β ) t ) .
c D A = 9 c χ 2 16 π 4 n 2 σ D e m ( λ ) σ A a b s ( λ ) d λ .

Metrics