Abstract

We propose a single layer all-dielectric metasurface lens to simultaneously convert and focus an incident linear polarization into a radial beam with high efficiency and high numerical aperture (NA). It shows a better focusing property compared with the linearly polarized metasurface lens for high NA. A tight spot size (0.502λ) is achieved for the NA = 0.94. Additionally, the emergent polarization can in principle be switched flexibly between radially and azimuthally polarized beams by the adjustment of incident polarization direction. It is expected that our scheme may have potential value in microscopy, material processing, medicine, particles accelerating and trapping, and so on.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens

Hao Chen, Zhixiang Wu, Zeyu Li, Zhenfei Luo, Xue Jiang, Zhongquan Wen, Liguo Zhu, Xun Zhou, Hua Li, Zhengguo Shang, Zhihai Zhang, Kun Zhang, Gaofeng Liang, Senlin Jiang, Lianghui Du, and Gang Chen
Opt. Express 26(23) 29817-29825 (2018)

Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties

Chengcheng Ping, CHunhao Liang, Fei Wang, and Yangjian Cai
Opt. Express 25(26) 32475-32490 (2017)

Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface

Jianhua Shu, Ziyang Chen, Jixiong Pu, and Yongxin Liu
J. Opt. Soc. Am. A 31(6) 1180-1185 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  2. W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
    [Crossref]
  3. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  4. H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
    [Crossref] [PubMed]
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  6. L. Yang, X. Xie, S. Wang, and J. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38(8), 1331–1333 (2013).
    [Crossref] [PubMed]
  7. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
    [Crossref] [PubMed]
  8. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [Crossref] [PubMed]
  9. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), S83–S88 (2002).
    [Crossref]
  10. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [Crossref]
  11. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
    [Crossref]
  12. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [Crossref] [PubMed]
  13. W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16(20), 15694–15699 (2008).
    [Crossref] [PubMed]
  14. C. R. Doerr and L. L. Buhl, “Circular grating coupler for creating focused azimuthally and radially polarized beams,” Opt. Lett. 36(7), 1209–1211 (2011).
    [Crossref] [PubMed]
  15. C. F. Phelan, J. F. Donegan, and J. G. Lunney, “Generation of a radially polarized light beam using internal conical diffraction,” Opt. Express 19(22), 21793–21802 (2011).
    [Crossref] [PubMed]
  16. H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
    [Crossref] [PubMed]
  17. J. Qi, X. Li, W. Wang, X. Wang, W. Sun, and J. Liao, “Generation and double-slit interference of higher-order vector beams,” Appl. Opt. 52(34), 8369–8375 (2013).
    [Crossref] [PubMed]
  18. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  19. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  20. G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36(17), 3479–3481 (2011).
    [Crossref] [PubMed]
  21. X.-C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008).
    [Crossref] [PubMed]
  22. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
    [Crossref] [PubMed]
  23. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  24. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
    [Crossref]
  25. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  26. X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
    [Crossref]
  27. M. Kang, J. Chen, X.-L. Wang, and H.-T. Wang, “Twisted vector field from an inhomogeneous and anisotropic metamaterial,” J. Opt. Soc. Am. B 29(4), 572–576 (2012).
    [Crossref]
  28. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
    [Crossref] [PubMed]
  29. J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
    [Crossref]
  30. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  31. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  32. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
    [Crossref]
  33. Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
    [Crossref] [PubMed]
  34. J. Luo, H. Yu, M. Song, and Z. Zhang, “Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces,” Opt. Lett. 39(8), 2229–2231 (2014).
    [Crossref] [PubMed]
  35. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref] [PubMed]
  36. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  37. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
    [Crossref] [PubMed]
  38. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
    [Crossref] [PubMed]
  39. W. Moriaki, K. Keiei, and S. Takehisa, Physical properties and data of optical materials (Beijing: Chemical Industry Press (in Chinese), 2010).
  40. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization: reply to comment,” Opt. Express 20(6), 6058–6059 (2012).
    [Crossref] [PubMed]
  41. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349 (1959).
    [Crossref]
  42. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

2015 (6)

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (9)

L. Yang, X. Xie, S. Wang, and J. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38(8), 1331–1333 (2013).
[Crossref] [PubMed]

Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

J. Qi, X. Li, W. Wang, X. Wang, W. Sun, and J. Liao, “Generation and double-slit interference of higher-order vector beams,” Appl. Opt. 52(34), 8369–8375 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

2012 (4)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization: reply to comment,” Opt. Express 20(6), 6058–6059 (2012).
[Crossref] [PubMed]

M. Kang, J. Chen, X.-L. Wang, and H.-T. Wang, “Twisted vector field from an inhomogeneous and anisotropic metamaterial,” J. Opt. Soc. Am. B 29(4), 572–576 (2012).
[Crossref]

2011 (5)

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

2008 (4)

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

X.-C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008).
[Crossref] [PubMed]

W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16(20), 15694–15699 (2008).
[Crossref] [PubMed]

2007 (2)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

2006 (2)

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[Crossref] [PubMed]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (2)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), S83–S88 (2002).
[Crossref]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349 (1959).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Allegre, O. J.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Alù, A.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arisaka, K.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Brown, T.

Bu, J.

Buhl, L. L.

Burge, R. E.

Cao, Y.

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Chen, H.

Chen, J.

Chen, W.

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

Cheng, A.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[Crossref] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Dearden, G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Ding, J.

Doerr, C. R.

Donegan, J. F.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Edwardson, S. P.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Gao, P.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Genevet, P.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Golshani, P.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[Crossref] [PubMed]

Gonçalves, J. T.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[Crossref] [PubMed]

Gong, Z.

Gori, F.

Grbic, A.

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Hao, J.

Hong, M. H.

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Hu, C.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

Huang, C.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jackel, S.

Jin, J.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

Kang, M.

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Lai, W. J.

Leger, J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, H.

Li, X.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

J. Qi, X. Li, W. Wang, X. Wang, W. Sun, and J. Liao, “Generation and double-slit interference of higher-order vector beams,” Appl. Opt. 52(34), 8369–8375 (2013).
[Crossref] [PubMed]

Liao, J.

Lim, B. C.

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

X.-C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008).
[Crossref] [PubMed]

Long, Y.

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Lumer, Y.

Lunney, J. G.

Luo, J.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

J. Luo, H. Yu, M. Song, and Z. Zhang, “Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces,” Opt. Lett. 39(8), 2229–2231 (2014).
[Crossref] [PubMed]

Luo, X.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

Ma, X.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

Machavariani, G.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Meir, A.

Monticone, F.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Moshe, I.

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Pereira, S. F.

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

Perrie, W.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Phelan, C. F.

Phua, P. B.

Piché, M.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), S83–S88 (2002).
[Crossref]

Polman, A.

Portera-Cailliau, C.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[Crossref] [PubMed]

Pu, M.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

Qi, J.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349 (1959).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Shalaev, V. M.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Song, M.

Su, X.

Sun, W.

Tang, D.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Teo, H. H.

Tiaw, K. S.

Urbach, H. P.

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

van de Groep, J.

Varin, C.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), S83–S88 (2002).
[Crossref]

Wang, C.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, H.-T.

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, S.

Wang, W.

Wang, X.

Wang, X.-L.

Wang, Y.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Watkins, K. G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Wei, S. B.

Wei, Z.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349 (1959).
[Crossref]

Xie, X.

Xu, J.

Yang, L.

Yao, N.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

Youngworth, K.

Yu, H.

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

J. Luo, H. Yu, M. Song, and Z. Zhang, “Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces,” Opt. Lett. 39(8), 2229–2231 (2014).
[Crossref] [PubMed]

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, G. H.

Yuan, X.-C.

Zhan, Q.

Zhang, B.-F.

Zhang, Z.

Zhao, Z.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

Zhou, J.

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74(S1), S83–S88 (2002).
[Crossref]

Appl. Phys. Lett. (1)

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Int. J. Antennas Propag. (1)

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

J. Mod. Opt. (1)

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

J. Opt. (1)

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nano Lett. (2)

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured holograms for broadband manipulation of vector beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Opt. Commun. (2)

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265(2), 411–417 (2006).
[Crossref]

J. Luo, Z. Zhao, M. Pu, N. Yao, D. Tang, P. Gao, J. Jin, X. Li, C. Wang, H. Yu, and X. Luo, “Tight focusing of radially and azimuthally polarized light with plasmonic metalens,” Opt. Commun. 356, 445–450 (2015).
[Crossref]

Opt. Express (8)

Opt. Lett. (8)

Phys. Rev. Lett. (3)

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

H. P. Urbach and S. F. Pereira, “Field in focus with a maximum longitudinal electric component,” Phys. Rev. Lett. 100(12), 123904 (2008).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349 (1959).
[Crossref]

Sci. Rep. (1)

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref] [PubMed]

Science (1)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Other (1)

W. Moriaki, K. Keiei, and S. Takehisa, Physical properties and data of optical materials (Beijing: Chemical Industry Press (in Chinese), 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic three-dimensional view of a unit cell. The refraction indexes of substrate and post are 1.396 and 3.418 [39], respectively. θ is an orientation of the silicon elliptical post. Other parameters: p = 5.15 μm, h = 6.6 μm. (b) The color-coded magnetic energy density when x-polarized light is normally incident from the substrate of periodic posts. The dashed white lines denote the boundary of the silicon posts. (left: x-y cross-section at 3.3 μm above the BaF2-Si interface; right: x-z cross-section; parameters: Du = 1.91 μm, Dv = 3.45 μm, θ = 0). (c) and (d) The phase shift (ϕx) and transmission (Tx) as a function of the elliptical post diameters (Du and Dv) for x-polarized light. The color-coded image of ϕy (or Ty) for y-polarized incident light is a mirrored image of that of ϕx in (c) (or Tx in (d)) flipped along the Du = Dv. (e) The phase shift (ϕx), transmissions (Tx and Ty) and phase difference (PD) between x and y polarization excitation of the eight unit cells. The elliptical post diameters (Du and Dv) of unit cells from 1 to 4 are Du = 1.7, 1.02, 4.27 and 3.45 μm, and Dv = 3.24, 4.28, 1.96 and 1.91μm. The blue shot dash line presents an average transmission of 0.95. The unit cells from 5 to 8 are acquired by rotating the elliptical posts from 1 to 4 by an angle of 90° clockwise.
Fig. 2
Fig. 2 (a) Schematic representation of generating and focusing RP (or AP) light from x- (or y-) polarized light. A focal spot can come into being for x-polarized incident beam; a ring focus can be obtained for y-polarized incident beam. (b) The schematic of the designed planar A-lens with size of 385 μm × 385 μm and focal length of 70 μm. Insets: expanded view of the A-lens.
Fig. 3
Fig. 3 (a) and (b) Two views of focused cross-sections (z = 69.3 μm and y = 0 plane) for x-polarized incident light. (c) The cross-sectional intensity profile at the focal plane (z = 69.3 μm) for y-polarized incident light. (d)-(f) The sectional intensity profiles of simulation and theory calculations: (d) for x-polarized incident beam at the focus along the x-axis; (e) for x-polarized incident beam along the optical axis; (f) for y-polarized incident beam at the focus along the x-axis. The theory and simulation results in (d) and (f) are compared at different distances from the lens but at the focal points of each one (z = 69.3 μm for simulation, z = 69.8 μm for theory).
Fig. 4
Fig. 4 (a) Simulated transmission and phase shift of a 2D periodic array of silicon cylinders in a hexagonal lattice. (b-d) Three views of focused cross-sections (z = 69.3 μm, y = 0 and x = 0 plane) for B-lens. The cross-sectional intensity distributions at the z = 69.3 μm plane along the x and y direction are illustrated in (c) and (d), respectively. The black and green shot dash lines, and the white solid curve in the insets depict the normalized intensity of the x component, longitudinal z component, and total field, respectively.
Fig. 5
Fig. 5 The focusing efficiency (E1 and E2), FWHM (Fx1, Fx2 and Fy2), focal shift (FS1 and FS2) and maximum focused amplitude (A1 and A2) of two different types of meta-lenses (A-lens and B-lens) vary with different NA values. Here, FS1, A1, E1 and Fx1 present the focusing features of A-lens.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G=η [ cosφ sinφ sinφ cosφ ].
E=η E 0 exp(jkz)[ cosφ,sinφ,0 ].
E=η E 0 exp(jkz)[ sinφ,cosφ,0 ].
ϕ(x,y)=2nπ+k( x 2 + y 2 + f 2 f).
E=η E 0 exp(jk x 2 + y 2 + f 2 )[ cosαcosφ cosαsinφ sinα ].
E=η E 0 exp(jk x 2 + y 2 + f 2 )[ sinφ cosφ 0 ].
E= y max y max x max x max η E 0 exp(jk x 2 + y 2 + f 2 )[ cosαcosφ cosαsinφ sinα ] dxdy.
E= y max y max x max x max η E 0 exp(jk x 2 + y 2 + f 2 )[ sinφ cosφ 0 ] dxdy.

Metrics