Abstract

Designing effective light-trapping structures for the insufficiently absorbed long-wavelength light in ultrathin silicon solar cells represents a key challenge to achieve low cost and highly efficient solar cells. We propose a hybrid structure based on the biomimetic silicon moth-eye structure combined with Ag nanoparticles to achieve advanced light trapping in 2 μm thick crystalline silicon solar cells approaching the Yablonovitch limit. By synergistically using the Mie resonances of the silicon moth-eye structure and the plasmonic resonances of the Ag nanoparticles, the integrated absorption enhancement achieved across the usable solar spectrum is 69% compared with the cells with the conventional light trapping design. This is significantly larger than both the silicon moth-eye structure (58%) and Ag nanoparticle (41%) individual light trapping. The generated photocurrent in the 2 μm thick silicon layer is as large as 33.4 mA/cm2, which is equivalent to that generated by a 30 μm single-pass absorption in the silicon. The research paves the way for designing highly efficient light trapping structures in ultrathin silicon solar cells.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells

Rui Xu, Xiaodong Wang, Liang Song, Wen Liu, An Ji, Fuhua Yang, and Jinmin Li
Opt. Express 20(5) 5061-5068 (2012)

Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells

Shrestha Basu Mallick, Mukul Agrawal, and Peter Peumans
Opt. Express 18(6) 5691-5706 (2010)

Light trapping in ultrathin 25  μm exfoliated Si solar cells

Mohamed M. Hilali, Sayan Saha, Emmanuel Onyegam, Rajesh Rao, Leo Mathew, and Sanjay K. Banerjee
Appl. Opt. 53(27) 6140-6147 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
    [Crossref]
  2. A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
    [Crossref]
  3. K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
    [Crossref]
  4. G. Willeke, “Thin crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 72(1–4), 191–200 (2002).
    [Crossref]
  5. L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
    [Crossref]
  6. J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
    [Crossref] [PubMed]
  7. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  8. J. H. Zhao, A. H. Wang, and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999).
    [Crossref]
  9. A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
    [Crossref] [PubMed]
  10. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [Crossref] [PubMed]
  12. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  13. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [Crossref] [PubMed]
  14. L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
    [Crossref]
  15. C. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [Crossref]
  16. J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
    [Crossref]
  17. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
    [Crossref] [PubMed]
  18. A. Asadollahbaik, S. A. Boden, M. D. Charlton, D. N. Payne, S. Cox, and D. M. Bagnall, “Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation,” Opt. Express 22(S2Suppl 2), A402–A415 (2014).
    [Crossref] [PubMed]
  19. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  20. M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).
  21. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
    [Crossref]
  22. Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
    [Crossref]
  23. F. Beck, S. Mokkapati, and K. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
    [Crossref]
  24. Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
    [Crossref]
  25. Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
    [Crossref]
  26. Z. Sun, X. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett. 37(4), 641–643 (2012).
    [Crossref] [PubMed]
  27. T. Gao, E. Stevens, J. K. Lee, and P. W. Leu, “Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping,” Opt. Lett. 39(16), 4647–4650 (2014).
    [Crossref] [PubMed]
  28. C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
    [PubMed]
  29. FDTD Solutions 8.12 (Lumerical, 2014).
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  32. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
    [Crossref]
  33. M. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
    [Crossref]

2015 (1)

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

2014 (5)

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
[Crossref]

A. Asadollahbaik, S. A. Boden, M. D. Charlton, D. N. Payne, S. Cox, and D. M. Bagnall, “Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation,” Opt. Express 22(S2Suppl 2), A402–A415 (2014).
[Crossref] [PubMed]

T. Gao, E. Stevens, J. K. Lee, and P. W. Leu, “Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping,” Opt. Lett. 39(16), 4647–4650 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

2012 (6)

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Z. Sun, X. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett. 37(4), 641–643 (2012).
[Crossref] [PubMed]

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

2011 (2)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
[Crossref] [PubMed]

2010 (3)

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

F. Beck, S. Mokkapati, and K. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

2009 (1)

M. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
[Crossref]

2008 (2)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

C. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

2002 (1)

G. Willeke, “Thin crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 72(1–4), 191–200 (2002).
[Crossref]

1999 (2)

K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
[Crossref]

J. H. Zhao, A. H. Wang, and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999).
[Crossref]

1996 (1)

A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
[Crossref]

1993 (1)

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

1982 (2)

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Arch, J.

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Asadollahbaik, A.

Ashraf, A.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Bagnall, D. M.

Barnett, A.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Bauser, E.

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

Beck, F.

F. Beck, S. Mokkapati, and K. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Black, C. T.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Boden, S. A.

Boukai, A.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Carroll, M.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Catchpole, K.

F. Beck, S. Mokkapati, and K. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Catchpole, K. R.

Chanda, D.

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Chang, W. L.

Charlton, M. D.

Chen, J. Y.

Chen, X.

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Chitambar, M.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Cody, G.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Corcoran, C. J.

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Cox, S.

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Eisaman, M. D.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Fahim, N.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Feng, Q.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Gao, T.

Gerger, A.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Green, M.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

M. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
[Crossref]

A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
[Crossref]

Green, M. A.

J. H. Zhao, A. H. Wang, and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Gu, M.

Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
[Crossref]

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Guo, X.

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Han, J.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Ho, G.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Ho-Baillie, A.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

Holdermann, K.

K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
[Crossref]

Hong, M.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Huang, C. K.

Ji, J.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Jia, B.

Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
[Crossref]

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Jiang, B.

C. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Jiang, P.

C. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Kampwerth, H.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

Kang, S.

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Kao, T.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Kolodinski, S.

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

Kwon, J. Y.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Lee, D. H.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Lee, J. K.

Lennon, A.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Leu, P. W.

Li, H.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Li, L.

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Li, X.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lochtefeld, A.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Lu, H.

Luo, F.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Luo, X.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Maldonado, S.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Mehrvarz, H.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

Mokkapati, S.

F. Beck, S. Mokkapati, and K. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Munzer, K.

K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
[Crossref]

Ng, B.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Nuzzo, R. G.

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Opila, R.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Ouyang, Z.

Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
[Crossref]

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Payne, D. N.

Pillai, S.

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

Polman, A.

Rahman, A.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Rau, U.

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

Schlosser, R.

K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
[Crossref]

Shi, Z.

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Sterk, S.

K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
[Crossref]

Stevens, E.

Stokes, N.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Sun, C.

C. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Sun, K. W.

Sun, Z.

Sutter, P.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Teng, J.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Tong, X.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Tuteja, A.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Ventura, M.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Wang, A.

A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
[Crossref]

Wang, A. H.

J. H. Zhao, A. H. Wang, and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

Wenham, S.

A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
[Crossref]

Werner, J.

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

Willeke, G.

G. Willeke, “Thin crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 72(1–4), 191–200 (2002).
[Crossref]

Xin, H.

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Yang, J.

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Yang, L.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Yang, Y.

Z. Sun, X. Zuo, and Y. Yang, “Role of surface metal nanoparticles on the absorption in solar cells,” Opt. Lett. 37(4), 641–643 (2012).
[Crossref] [PubMed]

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
[Crossref]

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

Zhao, J.

A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
[Crossref]

Zhao, J. H.

J. H. Zhao, A. H. Wang, and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999).
[Crossref]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Zuo, X.

ACS Appl. Mater. Interfaces (1)

C. J. Corcoran, S. Kang, L. Li, X. Guo, D. Chanda, and R. G. Nuzzo, “Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector,” ACS Appl. Mater. Interfaces 5(10), 4239–4246 (2013).
[PubMed]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Appl. Phys. Lett. (3)

C. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

J. Werner, S. Kolodinski, U. Rau, J. Arch, and E. Bauser, “Silicon solar cell of 16.8 μm thickness and 14.7% efficiency,” Appl. Phys. Lett. 62(23), 2998–3000 (1993).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100(15), 151101 (2012).
[Crossref]

IEEE J. Photovolt. (1)

L. Wang, A. Lochtefeld, J. Han, A. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-μm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2014).
[Crossref]

IEEE Trans. Electron Dev. (2)

K. Munzer, K. Holdermann, R. Schlosser, and S. Sterk, “Thin monocrystalline silicon solar cells,” IEEE Trans. Electron Dev. 46(10), 2055–2061 (1999).
[Crossref]

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (2)

Y. Zhang, B. Jia, Z. Ouyang, and M. Gu, “Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells,” J. Appl. Phys. 116(12), 124303 (2014).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

J. Opt. Soc. Am. (1)

Light Sci. Appl. (1)

J. Yang, F. Luo, T. Kao, X. Li, G. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Nano Lett. (3)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12(10), 5143–5147 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophotonics 1(3–4), 235–248 (2012).

Nat. Commun. (1)

A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, “Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells,” Nat. Commun. 6, 5963 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (4)

J. H. Zhao, A. H. Wang, and M. A. Green, “24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. Res. Appl. 7(6), 471–474 (1999).
[Crossref]

A. Wang, J. Zhao, S. Wenham, and M. Green, “21.5% Efficient thin silicon solar cell,” Prog. Photovolt. Res. Appl. 4(1), 55–58 (1996).
[Crossref]

F. Beck, S. Mokkapati, and K. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

M. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. Green, “Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Energy Mater. Sol. Cells 101, 217–226 (2012).
[Crossref]

G. Willeke, “Thin crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 72(1–4), 191–200 (2002).
[Crossref]

Other (2)

FDTD Solutions 8.12 (Lumerical, 2014).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the hybrid light trapping structure with the top surface moth-eye structure and the bottom hemispherical Ag nanoparticles. (b) Cross-sectional view of the hybrid light trapping structure. Grey: Si, red: Ag nanoparticles, green: Al reflector.
Fig. 2
Fig. 2 Complex refractive indices n + ki of (a) the Si used in the FDTD and (b) the measured SiNx.
Fig. 3
Fig. 3 Normalized scattering/absorption cross-sections of (a) the moth-eye element with base diameter 1000 nm and aspect ratio 1.8 and (b) the hemispherical Ag nanoparticle embedded in SiO2 with a diameter of 250 nm, in comparison to that with the Si layer present.
Fig. 4
Fig. 4 Si absorption spectra (blue) for the four different structures (a) hybrid (b) top moth-eye only (c) bottom nanoparticle only (d) bare, compared with that in the single-pass (black) and the Yablonovitch limit (red). The inset diagrams present the corresponding solar cell structures. Grey: Si, red: Ag nanoparticles, green: Al reflector, blue: SiNx. The photocurrent density (e) of (a-d) and the single-pass absorption (black dotted line), the Yablonovitch limit (red dotted line) and the full absorption of the entire available solar spectrum from 300 nm to 1200 nm (green dotted line). (f) Absorption enhancement by the structures (a)-(c), relative to that by structure (d).
Fig. 5
Fig. 5 Electric field distributions inside the Si layers of the four solar cell configurations (a) hybrid (b) top only (c) bottom only (d) bare at the wavelength 900 nm. (The red dash lines indicate the interfaces of the Si moth-eye structure and the air).
Fig. 6
Fig. 6 (a) The absorption losses in the Ag nanoparticles and the various reflectors (b) the Si absorption spectra of the hybrid structure with different reflector schemes: Al (black), Ag (red) and PEC (green).
Fig. 7
Fig. 7 Photocurrent generated by the four structures as a function of the Si thickness, referenced to the Yablonovitch limit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= 4AR D 1 r 2

Metrics