Abstract

The optical analysis of optically-textured and electrically-flat ultra-thin crystalline silicon (c-Si) slabs is presented. These slabs were endowed with decoupled front titanium-dioxide (TiO2) / back silicon-dioxide (SiO2) dielectric textures and were studied as function of two types of back reflectors: standard silver (Ag) and dielectric modulated distributed Bragg reflector (MDBR). The optical performance of such systems was compared to that of state-of-the-art flat c-Si slabs endowed with so-called front Mie resonators and to those of similar optical systems still endowed with the same back reflectors and decoupled front/back texturing but based on textured c-Si and dielectric coatings (front TiO2 and back SiO2). Our optimized front dielectric textured design on 2-µm thick flat c-Si slab with MDBR resulted in more photo-generated current density in c-Si with respect to the same optical system but featuring state-of-the-art Mie resonators ( + 6.4%), mainly due to an improved light in-coupling between 400 and 700 nm and light scattering between 700 and 1050 nm. On the other hand, the adoption of textured dielectric layers resulted in less photo-generated current density in c-Si up to −20.6% with respect to textured c-Si, depending on the type of back reflector taken into account.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell

Rudi Santbergen, Ryota Mishima, Tomomi Meguro, Masashi Hino, Hisashi Uzu, Johan Blanker, Kenji Yamamoto, and Miro Zeman
Opt. Express 24(18) A1288-A1299 (2016)

Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both

Joshua D. Winans, Chanse Hungerford, Krishanu Shome, Lewis J. Rothberg, and Philippe M. Fauchet
Opt. Express 23(3) A92-A105 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. S. E. Fraunhofer, “Photovoltaics report” (Fraunhofer ISE 2015). https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf
  2. ITRPV, “International Technology Roadmap for Photovoltaic, 6th edition” (ITRPV, 2015). http://www.itrpv.net/Reports/Downloads/2015/
  3. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [Crossref] [PubMed]
  4. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
    [Crossref] [PubMed]
  5. J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
    [Crossref]
  6. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
    [Crossref] [PubMed]
  7. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  8. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [Crossref] [PubMed]
  9. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  10. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
    [Crossref]
  11. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
    [Crossref]
  12. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
    [Crossref]
  13. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4), A841–A850 (2011).
    [Crossref] [PubMed]
  14. J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystaline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
    [Crossref]
  15. R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit,” Opt. Express 19(S4), A664–A672 (2011).
    [Crossref] [PubMed]
  16. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19(S4), A865–A874 (2011).
    [Crossref] [PubMed]
  17. R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
    [Crossref]
  18. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  19. O. Isabella, A. Ingenito, D. Linssen, and M. Zeman, “Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells,” OSA Technical Digest (online) (Optical Society of America, 2013), paper PM4C.2.
  20. A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
    [Crossref]
  21. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
    [Crossref]
  22. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  23. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
    [Crossref] [PubMed]
  24. A. H. M. Smets, K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, and M. Zeman, Solar Energy – The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems (UIT Cambridge, 2016).
  25. A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
    [Crossref]
  26. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  27. J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
    [Crossref]
  28. ANSYS white papers (ANSYS 2015). http://www.ansys.com/Products/Electronics/ANSYS-HFSS
  29. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
    [Crossref]
  30. M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
    [Crossref]
  31. O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
    [Crossref]
  32. NREL, “Reference solar spectral irradiance: Air Mass 1.5” (NREL, 2015). http://rredc.nrel.gov/solar/spectra/am1.5/
  33. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
    [Crossref]
  34. A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
    [Crossref]
  35. Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
    [Crossref]
  36. P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
    [Crossref]
  37. C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express 22(S2), A542–A551 (2014).
    [Crossref] [PubMed]
  38. S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).
  39. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).
  40. B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.
  41. S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
    [Crossref]
  42. C. Ducros and H. Szambolics, “Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector,” https://www.google.com/patents/WO2013160570A1 .
  43. H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 105, 094511 (2009).
  44. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
    [Crossref]
  45. K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
    [Crossref]
  46. A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
    [Crossref]
  47. R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4), A1023–A1028 (2014).
    [Crossref] [PubMed]
  48. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
    [Crossref] [PubMed]
  49. L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
    [Crossref]

2016 (2)

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

2015 (3)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

2014 (5)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express 22(S2), A542–A551 (2014).
[Crossref] [PubMed]

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4), A1023–A1028 (2014).
[Crossref] [PubMed]

2013 (4)

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

2012 (4)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).

2011 (9)

R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit,” Opt. Express 19(S4), A664–A672 (2011).
[Crossref] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4), A841–A850 (2011).
[Crossref] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19(S4), A865–A874 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[Crossref]

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystaline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

2010 (6)

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[Crossref] [PubMed]

2009 (3)

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 105, 094511 (2009).

J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
[Crossref]

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
[Crossref] [PubMed]

2007 (1)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

2003 (1)

1984 (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Agrawal, M.

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Andreani, L. C.

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express 22(S2), A542–A551 (2014).
[Crossref] [PubMed]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Ballif, C.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Barnett, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Battaglia, C.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Bhattacharya, J.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Biron, R.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Biswas, R.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit,” Opt. Express 19(S4), A664–A672 (2011).
[Crossref] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Bottler, W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Bozzola, A.

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Bugnon, G.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Campa, A.

B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.

Caratelli, D.

S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).

Carius, R.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Carroll, M.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Chakravarty, N.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Cvek, M.

B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.

Dalal, V. L.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

De Wolf, S.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

Dennis Slafer, W.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Dewan, R.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[Crossref]

Dong, J. R.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

Drouard, E.

El Daif, O.

Fahr, S.

Fan, S.

Fave, A.

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Gerger, A. P.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Gjessing, J.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystaline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Han, J.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

Haug, F.-J.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Herzig, H. P.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Holman, Z. C.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

Ingenito, A.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Isabella, O.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Jäger, K.

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Ji, J.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Jovanov, V.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[Crossref]

Kaminski, A.

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kimerling, L. C.

Kirchartz, T.

Knipp, D.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[Crossref]

Kondo, M.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 105, 094511 (2009).

Kowalczewski, P.

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

Krauss, T. F.

Krc, J.

J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
[Crossref]

B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.

Kwong, D.-L.

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Lederer, F.

Lemiti, M.

Lennon, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Letartre, X.

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Li, H.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Li, J.

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Lipovšek, B.

B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.

Liu, J.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lo, G.-Q.

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Lochtefeld, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Luxembourg, S. L.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
[Crossref]

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Mallick, S. B.

Marstein, E. S.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystaline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

Meier, M.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Meillaud, F.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Michaelis, D.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Michel, J.

Moulin, E.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Naqavi, A.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Opila, R.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Ortiz Lizcano, J. C.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

Paeder, V.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Paetzold, U. W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Pahud, C.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Park, Y.

Pattnaik, S.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Peumans, P.

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Raman, A.

Rau, U.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Rockstuhl, C.

Sai, H.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 105, 094511 (2009).

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Santbergen, R.

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Scharf, T.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Schuster, C. S.

Seassal, C.

Shao, B.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

Sheng, X.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Smets, A. H. M.

Söderström, K.

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Solntsev, S.

S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).

Spinelli, P.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Sudbo, A. S.

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystaline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

Suh, W.

Tan, H.

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Topic, M.

J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
[Crossref]

B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Vasilev, I.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Viktorovitch, P.

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Wachter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Weeber, A. W.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Wong, S. M.

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

Xu, C.

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Yang, H.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

Yu, H. Y.

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[Crossref] [PubMed]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Zeman, M.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4), A1023–A1028 (2014).
[Crossref] [PubMed]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).

J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
[Crossref]

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

Zhang, G.

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Zhang, J. C.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

Zhang, R. Y.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

ACS Photonics (1)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

J. Krč, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett. 94(15), 153501 (2009).
[Crossref]

H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 105, 094511 (2009).

IEEE J. Photovolt. (3)

S. Solntsev, O. Isabella, D. Caratelli, and M. Zeman, “Thin-film silicon solar cells on 1-D periodic gratings with nonconformal layers: optical analysis,” IEEE J. Photovolt. 3(1), 46–52 (2013).
[Crossref]

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovolt. 4(6), 1397–1404 (2016).
[Crossref]

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. Ortiz Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

J. Appl. Phys. (5)

J. Gjessing, A. S. Sudbo, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystaline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011).
[Crossref]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys. 110(1), 013101 (2011).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110(11), 113105 (2011).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

J. Li, H. Y. Yu, S. M. Wong, G. Zhang, G.-Q. Lo, and D.-L. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Light Sci. Appl. (1)

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

MRS Proc. (1)

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings,” MRS Proc. 1426, 149–154 (2012).

Nano Lett. (3)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Opt. Express (8)

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4), A1023–A1028 (2014).
[Crossref] [PubMed]

R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit,” Opt. Express 19(S4), A664–A672 (2011).
[Crossref] [PubMed]

S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express 19(S4), A865–A874 (2011).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3), A366–A380 (2010).
[Crossref] [PubMed]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express 19(S4), A841–A850 (2011).
[Crossref] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref] [PubMed]

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
[Crossref] [PubMed]

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express 22(S2), A542–A551 (2014).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (4)

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

A. Naqavi, F.-J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(11), 1147–1158 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

Other (9)

S. L. Luxembourg, P. Spinelli, A. Ingenito, J. Liu, O. Isabella, M. Zeman, and A. W. Weeber, “A benchmarking study of the application of a distributed Bragg reflector as back-reflector on n-Pasha solar cells,” 31st European Photovoltaic Solar Energy Conference and Exhibition, 972–975 (2015).

NREL, “Reference solar spectral irradiance: Air Mass 1.5” (NREL, 2015). http://rredc.nrel.gov/solar/spectra/am1.5/

ANSYS white papers (ANSYS 2015). http://www.ansys.com/Products/Electronics/ANSYS-HFSS

O. Isabella, A. Ingenito, D. Linssen, and M. Zeman, “Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells,” OSA Technical Digest (online) (Optical Society of America, 2013), paper PM4C.2.

I. S. E. Fraunhofer, “Photovoltaics report” (Fraunhofer ISE 2015). https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf

ITRPV, “International Technology Roadmap for Photovoltaic, 6th edition” (ITRPV, 2015). http://www.itrpv.net/Reports/Downloads/2015/

A. H. M. Smets, K. Jäger, O. Isabella, R. A. C. M. M. van Swaaij, and M. Zeman, Solar Energy – The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems (UIT Cambridge, 2016).

B. Lipovšek, M. Cvek, A. Čampa, J. Krč, and M. Topič, “Analysis and Optimisation of Periodic Interface Textures in Thin-Film Silicon Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 3120–3123.

C. Ducros and H. Szambolics, “Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector,” https://www.google.com/patents/WO2013160570A1 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a-d) Expanded 3-D rendering of dielectric-textured models used in simulations, indicating materials used: (a) flat reference, (b) structure with texturing only at the front side, (c) structure with texture only at the back side and (d) structure with decoupled front/back texturing. The flat c-Si slabs are 2-µm thick. (e-h) Expanded 3-D rendering of silicon-textured models used in simulations, indicating materials used: (a) flat reference, (b) structure with texturing only at the front side, (c) structure with texture only at the back side and (d) structure with decoupled front/back texturing. The textured c-Si slabs are 2-µm thick equivalent. Due to the study of two different back reflectors (Ag and MDBR), the total number of simulated models was 14, since models in (a) and (e) are the same.
Fig. 2
Fig. 2 (a) Structure of the MDBR (dimensions are not to scale) posed at the back side of c-Si slab coated with SiO2 dielectric spacer layer and (b) reflectance at SiO2 / MDBR interface inside c-Si bulk.
Fig. 3
Fig. 3 The absorption, reflectance and transmittance of the flat references with Ag BR (black curves) and MDBR (purple curves). The 4n2 curve (black dotted line) represents the Yablonovitch limit for a 2-μm thick c-Si slab.
Fig. 4
Fig. 4 Implied photo-generated current density of the flat references with MDBR (left side) and Ag BR (right side). The sketch in the inset is Fig. 1(a) or Fig. 1(e).
Fig. 5
Fig. 5 The absorption, reflectance and transmittance of the front textured structures. MDBR-1 and Ag-1 indicate devices with textured TiO2, while MDBR-2 and Ag-2 models with textured silicon.
Fig. 6
Fig. 6 Absorptance and reflectance of flat reference (black continuous line), architecture with TiO2-based Mie resonators (red dashed line) and architecture with high aspect-ratio TiO2 pyramids (blue dash-dotted line).
Fig. 7
Fig. 7 Architectures with flat front side and back texturing. MDBR-1 and Ag-1 indicate devices with textured SiO2, while MDBR-2 and Ag-2 models with textured silicon.
Fig. 8
Fig. 8 Architectures with decoupled front/back texturing. MDBR-1 and Ag-1 denote devices with textured dielectrics, while MDBR-2 and Ag-2 models with textured silicon.
Fig. 9
Fig. 9 Absorptance in the c-Si layer and losses (transmittance, reflectance, supporting layers) in optical systems with decoupled front/back texturing. The top panel refers to Fig. 1(h), while the bottom panel refers to Fig. 1(d). For the calculation of the 4n2 limit spectra, dEq. (-)c-Si and dc-Si indicate the total absorber thickness of textured c-Si and of flat c-Si, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A i (λ)= 1 2 ε 0 Im( ε i )ω V i | E | 2 dV
J phi (λ)=q 300 nm 1200 nm A i (λ)Φ(λ)dλ and J phR or T (λ)=q 300 nm 1200 nm R(λ) or T(λ)Φ(λ)dλ

Metrics