Abstract

The spectral optimization model for limited mesopic luminous efficacy (LLEm) of white LED integrated with quantum dots (QD-WLED) consisting of a blue chip, green, yellow and red quantum dots, including down-conversion energy loss, was developed under constraint of designated color rendering properties. The optimal spectra of QD-WLEDs with CRI ≥ 70 and CQS ≥ 60 as well as CRI ≥ 85 and CQS ≥ 85 for mesopic vision, photometric and colorimetric performances at correlated color temperature of 2700 K to 45000 K, as well as the LLEms of optimal QD-WLEDs for four road lighting standards of the USA and the UK were presented. These results suggest that QD-WLEDs make strong candidates for replacing conventional light sources in the future as they enhance the vision quality in the road lighting in addition to energy saving.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photometric optimization and comparison of hybrid white LEDs for mesopic road lighting

Chuanwen Zhang, Licai Xiao, Ping Zhong, and Guoxing He
Appl. Opt. 57(16) 4665-4671 (2018)

Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition

Wanlu Zhang, Wu Yang, Ping Zhong, Shiliang Mei, Guilin Zhang, Guoping Chen, Guoxing He, and Ruiqian Guo
Opt. Mater. Express 7(9) 3065-3076 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. He and J. Tang, “Spectral optimization of color temperature tunable white LEDs with excellent color rendering and luminous efficacy,” Opt. Lett. 39(19), 5570–5573 (2014).
    [Crossref] [PubMed]
  2. P. Zhong, G. He, and M. Zhang, “Optimal spectra of white LEDes using quantum dot nanophosphors,” Opt. Express 20(8), 9122–9134 (2012).
    [Crossref] [PubMed]
  3. P. Zhong, G. He, and M. Zhang, “Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED,” Opt. Express 20(S5Suppl 5), A684–A693 (2012).
    [Crossref] [PubMed]
  4. G. He and H. Yan, “Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation,” Opt. Express 19(3), 2519–2529 (2011).
    [Crossref] [PubMed]
  5. T. Erdem and H. V. Demir, “Color science of nanocrystal quantum dots for lighting and displays,” Nanophotonics 2(1), 57–81 (2013).
    [Crossref]
  6. Pacific Northwest National Laboratory, Spectrally enhanced lighting program implementation for energy savings: field evaluation, Tech Rep. PNNL-15784 (Pacific Northwest National Laboratory, 2006).
  7. International Commission on Illumination, Recommended system for mesopic photometry based on visual performance, Tech. Rep. 191:2010 (CIE, Austria, 2010).
  8. Illuminating Engineering Society of North America, Recommended practice RP-8–00 roadway lighting. (IESNA, USA, 2005).
  9. British Standards Institution, Code of practice for the design of road lighting – part 1: lighting of roads and public amenity areas, BS 5489–1:2003 (BSI, UK, 2003).
  10. British Standards Institution, Road lighting – part 2: performance requirements, BS EN 13201–2:2003 (BSI, UK, 2003).
  11. S. M. Berman, “Energy efficiency consequences of scotopic sensitivity,” J. Illum. Eng. Soc. 2(1), 3–14 (1992).
  12. S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
    [Crossref]
  13. A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
    [Crossref] [PubMed]
  14. S. Nizamoglu, T. Erdem, and H. V. Demir, “High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots,” Opt. Lett. 36(10), 1893–1895 (2011).
    [PubMed]
  15. Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
    [Crossref]
  16. T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
    [Crossref]
  17. International Commission on Illumination, Method of specifying and measuring color rendering properties of light sources (CIE, Austria, 1995).
  18. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [Crossref]
  19. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [Crossref]
  20. I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15(6), 3607–3618 (2007).
    [Crossref] [PubMed]
  21. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer, 1997).
  22. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
    [Crossref]
  23. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [Crossref]
  24. H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
    [Crossref]

2014 (2)

G. He and J. Tang, “Spectral optimization of color temperature tunable white LEDs with excellent color rendering and luminous efficacy,” Opt. Lett. 39(19), 5570–5573 (2014).
[Crossref] [PubMed]

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

2013 (2)

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

T. Erdem and H. V. Demir, “Color science of nanocrystal quantum dots for lighting and displays,” Nanophotonics 2(1), 57–81 (2013).
[Crossref]

2012 (2)

2011 (3)

2010 (2)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

2008 (1)

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[Crossref]

2007 (2)

I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15(6), 3607–3618 (2007).
[Crossref] [PubMed]

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

2006 (1)

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

2005 (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

1992 (1)

S. M. Berman, “Energy efficiency consequences of scotopic sensitivity,” J. Illum. Eng. Soc. 2(1), 3–14 (1992).

Berman, S. M.

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

S. M. Berman, “Energy efficiency consequences of scotopic sensitivity,” J. Illum. Eng. Soc. 2(1), 3–14 (1992).

Chen, G. L.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Chen, Z.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Coltrin, M. F.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Contreras, U.

Crawford, M. H.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Demir, H. V.

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

T. Erdem and H. V. Demir, “Color science of nanocrystal quantum dots for lighting and displays,” Nanophotonics 2(1), 57–81 (2013).
[Crossref]

S. Nizamoglu, T. Erdem, and H. V. Demir, “High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots,” Opt. Lett. 36(10), 1893–1895 (2011).
[PubMed]

Erdem, T.

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

T. Erdem and H. V. Demir, “Color science of nanocrystal quantum dots for lighting and displays,” Nanophotonics 2(1), 57–81 (2013).
[Crossref]

S. Nizamoglu, T. Erdem, and H. V. Demir, “High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots,” Opt. Lett. 36(10), 1893–1895 (2011).
[PubMed]

Erdem, Z. S.

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

Eskandari, H.

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[Crossref]

Fischer, A. J.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Gao, Y. L.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Geiger, C. D.

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[Crossref]

Guo, Z. Q.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

He, G.

Ji, Y.

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

Kelestemur, Y.

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

Krames, M. R.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Lin, S. Q.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Lita, A.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Lu, Y. J.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Martin, M. J.

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

Moreno, I.

Mueller, G. O.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Mueller-Mach, R.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Navvab, M.

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

Nizamoglu, S.

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Phillips, M.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Poelman, D.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Rohwer, L. E. S.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Sheedy, J.

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

Shih, T. M.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Simmons, J. A.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Smet, P. F.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Stiegman, A. E.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Strouse, G. F.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Tang, J.

Tithof, W.

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

Tsao, J. Y.

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

van de Burgt, L.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Washington, A. L.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Yan, H.

Zhang, J. H.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Zhang, M.

Zhong, P.

Zhu, L. H.

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

Adv. Mater. (1)

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Z. Q. Guo, T. M. Shih, Y. J. Lu, Y. L. Gao, L. H. Zhu, G. L. Chen, J. H. Zhang, S. Q. Lin, and Z. Chen, “Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes,” IEEE Photonics J. 5(4), 8200409 (2013).
[Crossref]

J. Electrochem. Soc. (1)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

J. Heuristics (1)

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[Crossref]

J. Illum. Eng. Soc. (1)

S. M. Berman, “Energy efficiency consequences of scotopic sensitivity,” J. Illum. Eng. Soc. 2(1), 3–14 (1992).

Laser Photonics Rev. (1)

M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photonics Rev. 1(4), 307–333 (2007).
[Crossref]

Light. Res. Technol. (1)

S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38(1), 41–52 (2006).
[Crossref]

Nanophotonics (2)

T. Erdem and H. V. Demir, “Color science of nanocrystal quantum dots for lighting and displays,” Nanophotonics 2(1), 57–81 (2013).
[Crossref]

T. Erdem, Y. Kelestemur, Z. S. Erdem, Y. Ji, and H. V. Demir, “Energy-saving quality road lighting with colloidal quantum dot nanophosphors,” Nanophotonics 3(6), 373–381 (2014).
[Crossref]

Opt. Eng. (2)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (7)

International Commission on Illumination, Method of specifying and measuring color rendering properties of light sources (CIE, Austria, 1995).

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer, 1997).

Pacific Northwest National Laboratory, Spectrally enhanced lighting program implementation for energy savings: field evaluation, Tech Rep. PNNL-15784 (Pacific Northwest National Laboratory, 2006).

International Commission on Illumination, Recommended system for mesopic photometry based on visual performance, Tech. Rep. 191:2010 (CIE, Austria, 2010).

Illuminating Engineering Society of North America, Recommended practice RP-8–00 roadway lighting. (IESNA, USA, 2005).

British Standards Institution, Code of practice for the design of road lighting – part 1: lighting of roads and public amenity areas, BS 5489–1:2003 (BSI, UK, 2003).

British Standards Institution, Road lighting – part 2: performance requirements, BS EN 13201–2:2003 (BSI, UK, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optimal SPDs of QD-WLEDs with CRI ≥ 70 and CQS ≥ 60 at CCTs of 2700 K to 45000 K (Duv ≤ 0.0054) for mesopic vision
Fig. 2
Fig. 2 Relationships of S/P ratio versus CCT for maximizing LLE ¯ m , maximizing S/P ratio, and [15]’s results.
Fig. 3
Fig. 3 LLEp versus CCT for maximizing, LLE ¯ m maximizing S/P ratio, and [15]’s results.
Fig. 4
Fig. 4 LERp versus CCT for maximizing, LLE ¯ m maximizing S/P ratio, and [15]’s results.
Fig. 5
Fig. 5 LLE ¯ m versus CCT for maximizing, LLE ¯ m maximizing S/P ratio, and [15]’s results.
Fig. 6
Fig. 6 Optimal SPDs of QD-WLEDs with CRI ≥ 85 and CQS ≥ 85 at CCTs of 2700 K to 45000 K (Duv ≤ 0.0054) for mesopic vision

Tables (7)

Tables Icon

Table 1 Optimal peak WL and Φe (%) of each color, and their performance of QD-WLEDs with CRI ≥ 70 and CQS ≥ 60 at CCTs of 2700 K to 45000 K, where the optimal ∆λ of each color is 30 nm.

Tables Icon

Table 2 Relationships of the highest LLE ¯ m of QD-WLEDs with CRI ≥ 70 and CQS ≥ 60 at CCT = 4500 K and the FWHM of each color component.

Tables Icon

Table 3 Optimal peak WL and Φe (%) of each color, and their performance of QD-WLEDs with CRI ≥ 85 and CQS ≥ 85 at CCTs of 2700 K to 45000 K, where the optimal ∆λ of each color is 30 nm.

Tables Icon

Table 4 Relationships of the highest LLE ¯ m of QD-WLEDs with CRI ≥ 85 and CQS ≥ 85 at CCT = 4500 K and the FWHM of each color component.

Tables Icon

Table 5 LLEms of optimal QD-WLEDs for four road lighting standards under CCTs of 2700 K to 45000 K

Tables Icon

Table 6 Lm values of optimal QD-WLEDs with the highest LLEm and the highest Lm reported by [16] for four road lighting standards.

Tables Icon

Table 7 Highest LEm of optimal QD-WLEDs with ηe,b = 50%, ηQD’ film = 70% for four road lighting standards.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S QD-W (λ)= i=1 4 q i S i (λ, λ 0i ,Δ λ i )
q ab = i=2 4 q i λ S i (λ, λ 0 i ,Δ λ i )λdλ / λ S 1 (λ, λ 1 ,Δ λ 1 )λdλ
LLE p 686 λ V(λ) S QD-W (λ)dλ/ λ ( q 1 q ab ) S 1 (λ, λ 01 ,Δ λ 1 )dλ
M(x) V m (λ,x)=xV(λ)+(1x)V'(λ)
LER m (x)= x+683(S/P)(1x)/1699 x+683(1x)/1699 LER p
L m (x)= x+683(S/P)(1x)/1699 x+683(1x)/1699 L p
LLE m (x)= x+(1x)(S/P)(683/1699) x+(1x)(683/1699) LLE p
F= LLE ¯ m = x=0 1 LLE m (x, λ 0b , λ 0g , λ 0y , λ 0r ,Δ λ b ,Δ λ g ,Δ λ y ,Δ λ r )/11 (under conditions of CRI I and CQSJ)
L E p = 683 η eb λ V(λ) S QD-W (λ)dλ λ ( q b + q ab )S(λ, λ b ,Δ λ b )dλ

Metrics